2020 Vol. 3, No. 2
Article Contents

Chun-lian Wang, Cheng-lin Liu, Jiu-yi Wang, Xiao-can Yu, Kai Yan, 2020. Palynology and stratigraphy of the thick evaporate-bearing Shashi Formation in Jiangling Depression, Jianghan Basin of South China, and its paleoclimate change, China Geology, 3, 283-291. doi: 10.31035/cg2020031
Citation: Chun-lian Wang, Cheng-lin Liu, Jiu-yi Wang, Xiao-can Yu, Kai Yan, 2020. Palynology and stratigraphy of the thick evaporate-bearing Shashi Formation in Jiangling Depression, Jianghan Basin of South China, and its paleoclimate change, China Geology, 3, 283-291. doi: 10.31035/cg2020031

Palynology and stratigraphy of the thick evaporate-bearing Shashi Formation in Jiangling Depression, Jianghan Basin of South China, and its paleoclimate change

More Information
  • In the greater inland Jianghan Basin of South China, three salt depressions are lacking accurate geological times, of which Jiangling Depression is the largest. Evaporites are important records of paleoclimate, however, the geological ages of evaporates are very difficult to be determined because often evaporates have scare macrofossils and microfossils. Nonmarine Cretaceous to Tertiary halite deposits interbedded with mudstones are widely distributed in China. Paleocene-Eocene Thermal Maximum had very high temperatures and attracted strong interests of geologists because these times can be compared with future climate change because of global warming. However, previous studies focused on marine sediments found that during the Paleocene-Early Eocene, massive evaporate deposits formed in Jiangling depression of the Jianghan Basin. In this paper, the authors show that the Shashi Formation halite deposits formed in the Paleocene according to palynology. Most of these palynology fossils are arid types, so the massive evaporites in the Jiangling depression could be closely related to the hot Paleocene climate. High temperatures during the Paleocene contributed to the formation of the massive evaporates in the Jiangling Depression, until sylvite was the result.

  • 加载中
  • [1] Batten DJ. 1982. Palynofacies, palaeoenvironments, and petroleum. Journal of Micropalaeontology, 1, 107–114. doi: 10.1144/jm.1.1.107

    CrossRef Google Scholar

    [2] Benavente CA, Zavattieri AM, Mancuso AC, Abarzúa F, Gierlowski-Kordesch EH. 2018. Paleolimnology of the Santa Clara Arriba paleolake (Triassic Cuyana rift basin): Integrating sedimentology and palynology. Journal of Paleolimnology, 59, 5–20. doi: 10.1007/s10933-016-9916-0

    CrossRef Google Scholar

    [3] Chen ZL, Wang X, Hu JF, Yang SL, Zhu M, Dong XX, Tang ZH, Peng PA, Ding ZL. 2014. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene Thermal Maximum record from central China. Earth Planetary Science Letters, 408(1), 331–340. doi: 10.1016/j.jpgl.2014.10.027

    CrossRef Google Scholar

    [4] Fang XM, Song CH, Dai S, Zhu YT, Gao JP, Zhang WL. 2007. Cenozoic deformation and uplift of the NE Qinghai-Tibet Plateau: Evidence from high-resolution magnetostratigraphy and basin evolution. Earth Science Frontiers, 14(1), 230–242 (in Chinese with English abstract).

    Google Scholar

    [5] Gu CG, Robin WR. 1994. The effect of Tibetan uplift on the formation and preservation of Tertiary lacustrine source-rocks in eastern China. Journal of Paleolimnology, 11, 31–40. doi: 10.1007/bf00683269

    CrossRef Google Scholar

    [6] Hu ZG, Hu MY, Hu JZ, Liu DM. 2011. Shallow water delta depositional model of the lower segment of the Xingouzui Formation in eastern Qianjiang depression. Geology in China, 38(5), 1263–1273 (in Chinese with English abstract). doi: 10.1007/s12583-011-0162-0

    CrossRef Google Scholar

    [7] Ji LM, Meng FW, Yan K, Song ZG. 2011. The dinoflagellate cyst Subtilisphaera from the Eocene of the Qaidam Basin, Northwest China, and its implications for hydrocarbon exploration. Review of Palaeobotany and Palynology, 167(1−2), 40–50. doi: 10.1016/j.revpalbo.2011.07.005

    CrossRef Google Scholar

    [8] Jiang L, Noah P, Zhao MY, Wei L, Wang XL. 2019. Authigenic origin for a massive negative carbon isotope excursion. Geology, 47(2), 115–118. doi: 10.1130/G45709.1

    CrossRef Google Scholar

    [9] Kalb AL, Bralower TJ. 2012. Nannoplankton origination events and environmental changes in the late Paleocene and early Eocene. Marine Micropaleontology, 92−93, 1–15. doi: 10.1016/j.marmicro.2012.03.003

    CrossRef Google Scholar

    [10] Kender S, Stephenson MH, Riding JB, Leng MJ, Konx RW, Peck VL, Kendrick CP, Ellis MA, Vane CH, Jamieson R. 2012. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene-Eocene transition. Earth and Planetary Science Letters, 353−354, 108–120. doi: 10.1016/j.jpgl.2012.08.011

    CrossRef Google Scholar

    [11] Li LL, Ye CH. 1993. Paleocene nonmarine ostracoda from the Yangtz-Han River Basin, Hubei. Acta Micropalaeontologica Sinica, 10, 53–70 (in Chinese with English abstract).

    Google Scholar

    [12] Li GY, Lü MG. 2002. Atlas of China’s petroliferous basins. Petroleum Industry Press, 1-593 (in Chinese).

    Google Scholar

    [13] Li RQ, Liu CL, Jiao PC, Wang JY. 2018. The tempo-spatial characteristics and forming mechanism of Lithium-rich brines in China. China Geology, 1, 72–83. doi: 10.31035/cg2018009

    CrossRef Google Scholar

    [14] Liu CL. 2013. Characteristics and formation of potash deposits in continental rift basin: A review. Acta Geoscientica Sinica, 34(5), 515–527. doi: 10.3975/cagsb.2013.05.02

    CrossRef Google Scholar

    [15] Liu CL, Wang CL, Xu HM, Liu BK. 2013a. Potassium mineral is reviewed in Jiangling Depreessiom. Mineral Deposits, 32(1), 221–222.

    Google Scholar

    [16] Liu CL, Wang LC, Xu HM, Wang CL. 2013b. The formation of the potassium-rich hot brine in the rifting depression of Jiangling, Hubei Province, China. Acta Geologica Sinica (English Edition), 87(supp.), 730.

    Google Scholar

    [17] Meng FW, Galamay AR, Ni P, Yang CH, Li YP, Zhuo QG. 2014. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85, 97–105. doi: 10.1016/j.jseaes.2014.01.024

    CrossRef Google Scholar

    [18] Meng FW, Ni P, Yuan XL, Zhou CM, Yang CH, Li YP. 2013. Choosing the best ancient analogue for projected future temperatures: A case using data from fluid inclusions of middle-late Eocene halites. Journal of Asian Earth Sciences, 67−68, 46–50. doi: 10.1016/j.jseaes.2013.02.008

    CrossRef Google Scholar

    [19] Pagani M, Caldeira K, Archer D, Zachos JC. 2006. An ancient carbon mystery. Science, 314, 1556–1557. doi: 10.1126/science.1136110

    CrossRef Google Scholar

    [20] Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 308, 600–603. doi: 10.1126/science.1110063

    CrossRef Google Scholar

    [21] Pearson PN, Palmer MR. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699. doi: 10.1038/35021000

    CrossRef Google Scholar

    [22] Schneider LJ, Bralower TJ, Kump LR, Patzkowsky ME. 2013. Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum. Paleobiology, 39(4), 628–647. doi: 10.1666/12050

    CrossRef Google Scholar

    [23] Schoon PL, Heilmann-Clausen C, Schultz BP, Sluijs A, Sinninghe Damstéac JS, Schouten S. 2013. Recognition of Early Eocene global carbon isotope excursions using lipids of marine Thaumarchaeota. Earth and Planetary Science Letters, 373, 160–168. doi: 10.1016/j.jpgl.2013.04.037

    CrossRef Google Scholar

    [24] Shen LJ, Liu CL, Wang LC, Hu YF, Hu MY, Feng YX. 2017. Degree of brine evaporation and origin of the Mengyejing potash deposit: Evidence from fluid inclusions in halite. Acta Geologica Sinica (English Edition), 91(1), 175–185. doi: 10.1111/1755-6724.13070

    CrossRef Google Scholar

    [25] Shen LJ, Siritongkham N. 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology, 3, 67–82. doi: 10.31035/cg2020009

    CrossRef Google Scholar

    [26] Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K. 2006. Subtropical Arctic Ocean temperatures during the Paleocene Eocene thermal maximum. Nature, 441, 610–613. doi: 10.1038/nature04668

    CrossRef Google Scholar

    [27] Soliman MF, Aubry MP, Schmitz B, Sherrell RM. 2011. Enhanced coastal paleoproductivity and nutrient supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and geochemical evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 365–377. doi: 10.1016/j.palaeo.2011.07.027

    CrossRef Google Scholar

    [28] Wang CL, Huang H, Wang JY, Xu HM, Yu XC, Gao C, Meng LY, Cai PR, Yan K, Fang JL. 2018. Geological features and metallogenic model of K-and Li-rich brine ore field in the Jiangling Depression. Acta Geologica Sinica, 92(8), 1630–1646 (in Chinese with English abstract).

    Google Scholar

    [29] Wang CL, Liu CL, Hu HB, Mao JS, Shen LJ, Zhao HT. 2012. Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling depression, Jianghan basin. Journal of Palaeogeography, 14(2), 165–175 (in Chinese with English abstract). doi: 10.7605/gdlxb.2012.02.003

    CrossRef Google Scholar

    [30] Wang CL, Liu CL, Liu BK, Shen LJ, Cai XL, Yu XC, Xie TX, Wang LC, Zhang YZ, Xuan ZQ. 2015. The Discovery of carnallite and its potash searching significance in Paleocene Jiangling Depression. Acta Geologica Sinica, 89(1), 129–136 (in Chinese with English abstract).

    Google Scholar

    [31] Wang CL, Liu CL, Xu HM, Wang LC, Shen LJ. 2013a. Sulfur isotopic composition of sulfate and its geological significance of Member 4 of Palaeocene Shashi Formation in Jiangling depression of Hubei province. Journal of Jilin University (Earth Science Edition), 43(3), 691–703 (in Chinese with English abstract). doi: 10.1371/journal.pone.0111381

    CrossRef Google Scholar

    [32] Wang CL, Liu CL, Xu HM, Wang LC, Zhang LB. 2013b. Carbon and oxygen isotopes characteristics of Palaeocene saline lake facies carbonates in Jiangling depression and their environmental significance. Acta Geoscientia Sinica, 34(5), 567–576 (in Chinese with English abstract). doi: 10.3975/cagsb.2013.05.07

    CrossRef Google Scholar

    [33] Wang CL, Liu CL, Xu HM, Wang LC, Zhang LB. 2013c. Homogenization temperature study of salt inclusions from the upper section of Shashi Formation in Jiangling depression. Acta Petrological Et Mineralogica, 32(3), 383–392 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2013.03.010

    CrossRef Google Scholar

    [34] Wang CL, Liu CL, Yu XC, Li HN, Liu JL. 2016. The extremely hot and dry climatic events and potash enrichment in salt lakes of the Jiangling Depression, Jianghan Basin. Acta Geologica Sinica (English Edition), 90(2), 769–770. doi: 10.1111/1755-6724.12712

    CrossRef Google Scholar

    [35] Wang DN, Zhao YN. 1980. Late Cretaceous-Early Paleogene sporo-pollen assemblage of the Jianghan Basin and their stratigraphical significance. Professional Papers of Stratigraphy and Palaeontology, 9, 121–171.

    Google Scholar

    [36] Weijers JWH, Schouten S, Sluijs A, Sluijs A, Brinkhuis H, Sinninghe Damstéac JS. 2007. Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth and Planetary Science Letters, 261, 230–238. doi: 10.1016/j.jpgl.2007.06.033

    CrossRef Google Scholar

    [37] Yan K, Servais T, Li J. 2010. Revision of the Ordovician acritarch genus Ampullula Righi 1991. Review of Palaeobotany and Palynology, 163, 11–25. doi: 10.1016/j.revpalbo.2010.08.004

    CrossRef Google Scholar

    [38] Ye ZP. 1992. Tertiary Palaeoclimate in south-east China. Acta Petrolei Sinica, 13(2), 143–149 (in Chinese with English abstract).

    Google Scholar

    [39] Yu XC, Liu CL, Wang CL, Wang JY, Xu HM, Li HN. 2018. Sedimentary characteristics and palaeoclimatic significance of glauberite in Paleocene lacustrine deposits of the Jiangling Depression, central China. Geosciences Journal, 22(3), 407–422. doi: 10.1007/s12303-017-0069-6

    CrossRef Google Scholar

    [40] Yu XC, Wang CL, Liu CL, Zhang ZC, Xu HM, Huang H, Xie TX, Li HN, Liu JL. 2015. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China. Chinese Journal of Oceanology and Limnology, 33(6), 1426–1435. doi: 10.1007/s00343-015-4375-4

    CrossRef Google Scholar

    [41] Zamagni J, Mutti M, Kosir A. 2012. The evolution of mid Paleocene-early Eocene coral communities: How to survive during rapid global warming. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318, 48–65. doi: 10.1016/j.palaeo.2011.12.010

    CrossRef Google Scholar

    [42] Zheng MP, Zhang YS, Yuan HR, Liu XF. 2011. Regional Distribution and Prospects of Potash in China. Acta Geologica Sinica (English Edition), 85(1), 17–50. doi: 10.1111/j.1755-6724.2011.00376.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1101) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint