2020 Vol. 3, No. 2
Article Contents

Bin Liu, Jiang-xin Chen, Syed Waseem Haider, Xi-guang Deng, Li Yang, Min-liang Duan, 2020. New high-resolution 2D seismic imaging of fluid escape structures in the Makran subduction zone, Arabian Sea, China Geology, 3, 269-282. doi: 10.31035/cg2020027
Citation: Bin Liu, Jiang-xin Chen, Syed Waseem Haider, Xi-guang Deng, Li Yang, Min-liang Duan, 2020. New high-resolution 2D seismic imaging of fluid escape structures in the Makran subduction zone, Arabian Sea, China Geology, 3, 269-282. doi: 10.31035/cg2020027

New high-resolution 2D seismic imaging of fluid escape structures in the Makran subduction zone, Arabian Sea

More Information
  • Seabed fluid escape is active in the Makran subduction zone, Arabian Sea. Based on the new high-resolution 2D seismic data, acoustic blanking zones and seafloor mounds are identified. Acoustic blanking zones include three kinds of geometries: Bell-shaped, vertically columnar and tilted zones. The bell-shaped blanking zone is characterized by weak and discontinuous reflections in the interior and up-bending reflections on the top, interpreted as gas chimneys. Vertically columnar blanking zone is interpreted as side-imaged gas chimneys associated with focused fluid flow and topped by a seafloor anomaly expressed as a localized reflection discontinuity, which may together serve as a vent structure. Tilted acoustic blanking zone could be induced by accretionary thrust activity and rapid sedimentation surrounding slope. Seafloor mounds occur at the sites of bell-shaped acoustic blanking zone and may be associated with the material intrusion. Bottom simulating refectors (BSRs) are widely distributed and exhibit a series of characteristics including diminished amplitude, low continuity as well as local shoaling overlapping with these acoustic blanking zones. The large amount of gases dissociated from the gas hydrates migrated upwards and then arrived at the near-seafloor sediments, followed by the formation of the gas hydrates and hence the seafloor mound.

  • 加载中
  • [1] Andresen K. 2012. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution? Marine Geology, 332–334, 89–108.

    Google Scholar

    [2] Baba K, Yamada Y. 2004. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: An example of accretionary prism and forearc basin system along the Nankai Trough, off Central Japan. Resource Geology, 54, 11–24. doi: 10.1111/j.1751-3928.2004.tb00183.x

    CrossRef Google Scholar

    [3] Bahk JJ, Kim JH, Kong GS, Park Y, Lee H, Park Y, Park K. 2009. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea. Geosciences Journal, 13(4), 371–386. doi: 10.1007/s12303-009-0039-8

    CrossRef Google Scholar

    [4] Baraza J, Ercilla G. 1996. Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Marine and Petroleum Geology, 13, 253–261. doi: 10.1016/0264-8172(95)00058-5

    CrossRef Google Scholar

    [5] Barnes P, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband G, Greinert J, Mountjoy J, Pedley K, Crutchley G. 2010. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi Subduction Margin, New Zealand. Marine Geology, 272, 26–48. doi: 10.1016/j.margeo.2009.03.012

    CrossRef Google Scholar

    [6] Berndt C. 2005. Focused fluid flow on continental margins. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 363, 2855–2871. doi: 10.1098/rsta.2005.1666

    CrossRef Google Scholar

    [7] Bohrmann G. 2008. Report and preliminary results of R/V METEOR Cruise M74/3, Fujairah-Male, 30 October–28 November 2007. Cold Seeps of the Makran Subduction Zone (Continental Margin of Pakistan). Berichte Fachbereich Geowissenschaften, Universitat Bremen, 266, 1–161. http://elibsuubuni-bremende/ip/docs/00010636pdf.

    Google Scholar

    [8] Cartwright J, Aplin A, Huuse M. 2007. Seal bypass system. AAPG Bulletin, 91, 1141–1166. doi: 10.1306/04090705181

    CrossRef Google Scholar

    [9] Clayton C, Hay S. 1994. Gas migration mechanisms from accumulation to surface. Bulletin of the Geological Society of Denmark, 41, 12–23.

    Google Scholar

    [10] Collett TS, Wendlandt RF. 2000. Formation evaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements, in Proceedings of the Ocean Drilling Program, Scientific Results, 164, 199–215, Texas A&M University, CollegeStation, Texas, Ocean Drilling Program.

    Google Scholar

    [11] Crutchley G, Fraser D, Pecher I, Gorman A, Maslen G, Henrys S. 2015. Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand: Gas migration, Hikurangi margin. Journal of Geophysical Research: Solid Earth, 120, 725–743. doi: 10.1002/2014JB011503

    CrossRef Google Scholar

    [12] Delisle G, Rad U, Andruleit H, Daniels CH, Tabrez A, Inam A. 2002. Active mud volcanoes on- and offshore eastern Makran, Pakistan. International Journal of Earth Sciences, 91, 93–110. doi: 10.1007/s005310100203

    CrossRef Google Scholar

    [13] DeMets C, Gordon R, Argus D, Stein S. 1990. Current Plate Motions. Geophysical Journal International, 101, 425–478. doi: 10.1111/j.1365-246X.1990.tb06579.x

    CrossRef Google Scholar

    [14] Dimitrov L. 2002. Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59, 49–76. doi: 10.1016/S0012-8252(02)00069-7

    CrossRef Google Scholar

    [15] Ding F, Spiess V, Fekete N, Murton B, Brüning M, Bohrmann G. 2010. Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage. Journal of Geophysical Research, 115(8), 1–16.

    Google Scholar

    [16] Dong DD, Wu SG, Sun YB, Wang XJ. 2008. Analysis of fluid potential in the Qiongdong-nan basin and its implication to gas hydrate formation. Marine Geology&Quaternary Geology, 28, 93–100 (in Chinese with English abstract).

    Google Scholar

    [17] Etiope G, Milkov A, Derbyshire E. 2008. Did geologic emissions of methane play any role in Quaternary climate change? Global and Planetary Change, 61(1–2), 79–88.

    Google Scholar

    [18] Feng D, Qiu JW, Hu Y, Peckmann J, Guan HX, Tong HP, Chen C, Chen JX, Gong SG, Li N, Chen DF. 2018. Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences, 168, 3–16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [19] Fischer D, Mogollón J, Strasser M, Pape T, Bohrmann G, Fekete N, Spiess V, Kasten S. 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 6(8), 647–651. doi: 10.1038/ngeo1886

    CrossRef Google Scholar

    [20] Fruehn J, White R, Minshull T. 1997. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova, 9, 101–104. doi: 10.1046/j.1365-3121.1997.d01-13.x

    CrossRef Google Scholar

    [21] Garcia-Gil S, Vilas F, Garcia-Garcia A. 2002. Shallow gas features in incised-valley fills (Ría de Vigo, NW Spain): A case study. Continental Shelf Research, 22(16), 2303–2315. doi: 10.1016/S0278-4343(02)00057-2

    CrossRef Google Scholar

    [22] Gay A, Lopez M, Berndt C, Séranne M. 2007. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244, 68–92. doi: 10.1016/j.margeo.2007.06.003

    CrossRef Google Scholar

    [23] Gay A, Lopez M, Cochonat P, Séranne M, Levaché D, Sermondadaz G. 2006. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology, 226, 25–40. doi: 10.1016/j.margeo.2005.09.018

    CrossRef Google Scholar

    [24] Golonka J. 2004. Plate tectonic evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1–4), 235–273.

    Google Scholar

    [25] Gong JM, Liao J, Sun J, Yang CS, Wang JQ, He YJ, Tian RC, Cheng QS, Chen ZQ. 2016. Factors controlling gas hydrate accumulation in Makran accretionary wedge off Pakistan. Marine geology frontiers, 32(12), 10–15 (in Chinese with English abstract).

    Google Scholar

    [26] Gong JM, Liao J, Yun WH, Zhang L, He YJ, Sun ZL, Yang CS, Wang JQ, Huang W, Meng M, Cheng HY. 2018. Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean. Marine Geology&Quaternary Geology, 38(2), 148–155 (in Chinese with English abstract).

    Google Scholar

    [27] Grando G, McClay K. 2007. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sedimentary Geology, 196, 157–179. doi: 10.1016/j.sedgeo.2006.05.030

    CrossRef Google Scholar

    [28] Granli J, Arntsen B, Sollid A, Hilde E. 1999. Imaging through gas-filled sediments using marine shear-wave data. Geophysics, 64, 668–677. doi: 10.1190/1.1444576

    CrossRef Google Scholar

    [29] Graue K. 2000. Mud volcanoes in deepwater Nigeria. Marine and Petroleum Geology, 17, 959–974. doi: 10.1016/S0264-8172(00)00016-7

    CrossRef Google Scholar

    [30] Hansen J, Cartwright JA, Huuse M, Clausen O. 2005. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, Offshore Mid-Norway. Basin Research, 17, 123–139. doi: 10.1111/j.1365-2117.2005.00257.x

    CrossRef Google Scholar

    [31] Himmler T, Bach W, Bohrmann G, Peckmann J. 2010. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1–2), 126–136.

    Google Scholar

    [32] Hosseini MA, Maleki AB, Mokhtari M. 2018. Splay faults in the makran subduction zone and changes of their transferred coulomb stress. Journal of the Earth and Space Physics, 43(4), 1–10.

    Google Scholar

    [33] Fang YX, Lu JA, Liang JQ, Kuang ZG, Cao YC, Chen DF. 2019. Numerical studies of gas hydrate evolution time in Shenhu area in the northern South China Sea. China Geology, 2, 49–55. doi: 10.31035/cg2018054

    CrossRef Google Scholar

    [34] Foucher JP, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D. 2009. Structure and Drivers of Cold Seep Ecosystems. Oceanography, 22, 93–109.

    Google Scholar

    [35] Jensen J, Bennike O. 2009. Geological setting as background for methane distribution in Holocene mud deposits, Arhus Bay, Denmark. Continental Shelf Research, 29(5–6), 775–784.

    Google Scholar

    [36] Judd AG. 2003. The global importance and context of methane escape from the seabed. Geo-Marine Letters, 23(3–4), 147–154. doi: 10.1007/s00367-003-0136-z

    CrossRef Google Scholar

    [37] Judd AG, Hovland M. 1992. The evidence of shallow gas in marine sediments. Continental Shelf Research, 12, 1081–1095. doi: 10.1016/0278-4343(92)90070-Z

    CrossRef Google Scholar

    [38] Judd AG, Hovland M. 2007. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge, Cambridge University Press.

    Google Scholar

    [39] Karstens J, Berndt C. 2015. Seismic chimneys in the Southern Viking Graben-Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412, 88–100. doi: 10.1016/j.jpgl.2014.12.017

    CrossRef Google Scholar

    [40] Kong L, Zhang ZF, Yuan QM, Liang QY, Shi YH, Lin JQ. 2018. Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope. China Geology, 1, 367–373. doi: 10.31035/cg2018051

    CrossRef Google Scholar

    [41] Kopp C, Fruehn J, Flueh ER, Reichert C, Kukowski N, Bialas J, Klaeschen D. 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329, 171–191. doi: 10.1016/S0040-1951(00)00195-5

    CrossRef Google Scholar

    [42] Kukowski N, Schillhorn T, Huhn K, Rad U, Husen S, Flueh E. 2001. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173(1−4), 1–19. doi: 10.1016/S0025-3227(00)00167-5

    CrossRef Google Scholar

    [43] Langhi L, Strand J, Ross AS. 2016. Fault-related biogenic mounds in the Ceduna Sub-basin, Australia. Implications for hydrocarbon migration. Marine and Petroleum Geology, 74, 47–58. doi: 10.1016/j.marpetgeo.2016.04.006

    CrossRef Google Scholar

    [44] Lee G, Kim D, Kim HJ, Jou HT, Lee Y. 2005. Shallow gas in the central part of the Korea Strait shelf mud off the southeastern coast of Korea. Continental Shelf Research, 25(16), 2036–2052. doi: 10.1016/j.csr.2005.08.008

    CrossRef Google Scholar

    [45] Lee M, Collett T. 2006. Gas hydrate and free gas saturations estimated from velocity logs on hydrate ridge, offshore oregon, U.S.A. Proceedings of the Ocean Drilling Program. Scientific Results, 204, 1–25.

    Google Scholar

    [46] Lee M, Dillon W. 2001. Amplitude blanking related to the pore-filling of gas hydrate in sediments. Marine Geophysical Researches, 22, 101–109. doi: 10.1023/A:1010371308699

    CrossRef Google Scholar

    [47] Liu X, Flemings P. 2006. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth and Planetary Science Letters, 241, 211–226. doi: 10.1016/j.jpgl.2005.10.026

    CrossRef Google Scholar

    [48] Løseth H, Gading M, Wensaas L. 2009. Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319. doi: 10.1016/j.marpetgeo.2008.09.008

    CrossRef Google Scholar

    [49] Løseth H, Wensaas L, Arntsen B, Hanken NM, Basire C, Graue K. 2011. 1000 m Long Gas Blow-out Pipes. Marine and Petroleum Geology, 28, 1047–1060. doi: 10.1016/j.marpetgeo.2010.10.001

    CrossRef Google Scholar

    [50] Løvlie R, Hanken NM. 2002. Conglomerate test of non-lithified Plio-Pleistocene marine sediments and rock magnetic constrains suggests pDRM type remagnetisation. Physics and Chemistry of the Earth, 27, 1121–1130. doi: 10.1016/S1474-7065(02)00107-9

    CrossRef Google Scholar

    [51] Macelloni L, Lutken CB, Ingrassia M, D’Emidio M, Pizzi M. 2016. Mesoscale biogeophysical characterization of Woolsey Mound (northern Gulf of Mexico), a new attribute of natural marine hydrocarbon seeps architecture. Marine Geology, 380, 330–344. doi: 10.1016/j.margeo.2016.03.016

    CrossRef Google Scholar

    [52] Maestrelli D, Iacopini D, Jihad AA, Bond C, Bonini M. 2017. Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): A multiphase and repeated intrusive mechanism. Marine and Petroleum Geology, 88, 489–510. doi: 10.1016/j.marpetgeo.2017.08.016

    CrossRef Google Scholar

    [53] Mazumdar A, Peketi A, Dewangan P, Badesab F, Ramprasad T, Ramana M, Patil D, Dayal A. 2009. Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Marine Geology, 267(1–2), 71–85.

    Google Scholar

    [54] Milkov A. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167, 29–42. doi: 10.1016/S0025-3227(00)00022-0

    CrossRef Google Scholar

    [55] Minshull T, White R. 1989. Sediment compaction and fluid migration in the Makran Accretionary Prism. Journal of Geophysical Research, 94(B6), 7387–7402. doi: 10.1029/JB094iB06p07387

    CrossRef Google Scholar

    [56] Moss J, Cartwright J. 2010. 3D seismic expression of Km-scale fluid escape pipes from offshore Namibia. Basin Research, 22, 481–501. doi: 10.1111/j.1365-2117.2010.00461.x

    CrossRef Google Scholar

    [57] Paull C, Normark W, Ussler B, Caress D, Keaten R. 2008. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Marine Geology, 250, 258–275. doi: 10.1016/j.margeo.2008.01.011

    CrossRef Google Scholar

    [58] Pecher I, Henrys S, Wood W, Kukowski N, Crutchley G, Fohrmann M, Kilner J, Senger K, Gorman A, Coffin R, Greinert J, Faure K. 2010. Focussed fluid flow on the Hikurangi Margin, New Zealand-Evidence from possible local upwarping of the base of gas hydrate stability. Marine Geology, 272, 99–113. doi: 10.1016/j.margeo.2009.10.006

    CrossRef Google Scholar

    [59] Plaza-Faverola A, Bünz S, Mienert J. 2010. Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. Marine and Petroleum Geology, 27, 46–60. doi: 10.1016/j.marpetgeo.2009.07.007

    CrossRef Google Scholar

    [60] Platt JP, Leggett JK, Young J, Raza H, Alam S. 1985. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13, 507–511. doi: 10.1130/0091-7613(1985)13<507:LSUITM>2.0.CO;2

    CrossRef Google Scholar

    [61] Rad UV, Berner U, Delisle G, Doose-Rolinski H, Fechner N, Linke P, Lückge A, Roeser HA, Schmaljohann R, Wiedicke M. 2000. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Marine Letters, 20, 10–19. doi: 10.1007/s003670000033

    CrossRef Google Scholar

    [62] Riedel M, Novosel I, Spence G, Hyndman R, Chapman R, Solem R. 2006. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin. Geological Society of America Bulletin, 118, 23–38. doi: 10.1130/B25720.1

    CrossRef Google Scholar

    [63] Riedel M, Spence G, Chapman R, Hyndman R. 2002. Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. Journal of Geophysical Research, 107(B9), 2200.

    Google Scholar

    [64] Römer M, Sahling H, Pape T, Spiess V, Bohrmann G. 2012. Gas bubble emission from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Reseach, 117, C10015.

    Google Scholar

    [65] Ryu BJ, Collett T, Riedel M, Kim G, Chun JH, Bahk J, Lee JY, Kim JH, Yoo DG. 2013. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology, 47, 1–20. doi: 10.1016/j.marpetgeo.2013.07.007

    CrossRef Google Scholar

    [66] Sager W, Lee C, Macdonald I, Schroeder W. 1999. High-frequency near-bottom acoustic reflection signatures of hydrocarbon seeps on the Northern Gulf of Mexico continental slope. Geo-Marine Letters, 18, 267–276.

    Google Scholar

    [67] Sain K, Minshull T, Singh S, Hobbs RW. 2000. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Marine Geology, 164, 3–12. doi: 10.1016/S0025-3227(99)00122-X

    CrossRef Google Scholar

    [68] Sanchez-Guillamón O, Vázquez JT, Palomino D, Medialdea T, Fernández-Salas LM, León R, Somoza L. 2018. Morphology and shallow structure of seafloor mounds in the Canary Basin (Eastern Central Atlantic Ocean). Geomorphology, 313, 27–47. doi: 10.1016/j.geomorph.2018.04.007

    CrossRef Google Scholar

    [69] Schlüter H, Prexl A, Gaedicke C, Roeser H, Reichert C, Meyer H, Daniels C. 2002. The Makran accretionary wedge: Sediment thicknesses and ages and the origin of mud volcanoes. Marine Geology, 185, 219–232. doi: 10.1016/S0025-3227(02)00192-5

    CrossRef Google Scholar

    [70] Schroot B, Klaver G, Schüttenhelm R. 2005. Surface and subsurface expressions of gas seepage to the seabed−Examples from the Southern North Sea. Marine and Petroleum Geology, 22, 499–515. doi: 10.1016/j.marpetgeo.2004.08.007

    CrossRef Google Scholar

    [71] Schwalenberg K, Wood W, Pecher I, Hamdan L, Henrys S, Jegen M, Coffin R. 2010. Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand. Marine Geology, 272, 89–98. doi: 10.1016/j.margeo.2009.10.024

    CrossRef Google Scholar

    [72] Shedd W, Boswell R, Frye M, Godfriaux P, Kramer K. 2012. Occurrence and nature of “bottom simulating reflectors” in the northern Gulf of Mexico. Marine and Petroleum Geology, 34, 31–40. doi: 10.1016/j.marpetgeo.2011.08.005

    CrossRef Google Scholar

    [73] Shoar BH, Javaherian A, Farajkhah NK, Arabani MS. 2014. Reflectivity template, a quantitative intercept-gradient AVO analysis to study gas hydrate resources−A case study of Iranian deep sea sediments. Marine and Petroleum Geology, 51, 184–196. doi: 10.1016/j.marpetgeo.2013.12.007

    CrossRef Google Scholar

    [74] Smith A, Flemings P, Liu X, Darnell K. 2014. The evolution of methane vents that pierce the hydrate stability zone in the world’s oceans. Journal of Geophysical Research: Solid Earth, 119, 6337–6356. doi: 10.1002/2013JB010686

    CrossRef Google Scholar

    [75] Smith G, McNeill L, Henstock T, Arraiz D, Spiess V. 2014. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran. Earth and Planetary Science Letters, 403, 131–143. doi: 10.1016/j.jpgl.2014.06.030

    CrossRef Google Scholar

    [76] Smith G, McNeill L, Henstock T, Bull J. 2012. The structure and fault activity of the Makran accretionary prism. Journal of Geophysical Research (Solid Earth), 117, B07407.

    Google Scholar

    [77] Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103, 1889–1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [78] Sultan N, Bohrmann G, Ruffine L, Pape T, Riboulot V, Colliat JL, Alexis dP, Dennielou B, Garziglia S, Himmler T, Marsset T, Peters C, Rabiu A, Wei J. 2014. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution: Pockmark formation and evolution. Journal of Geophysical Research: Solid Earth, 119, 2679–2694. doi: 10.1002/2013JB010546

    CrossRef Google Scholar

    [79] Tamaki M, Fujii T, Suzuki K. 2017. Characterization and Prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern nankai trough, Japan. Energies, 10(10), 1678. doi: 10.3390/en10101678

    CrossRef Google Scholar

    [80] Van Weering TCE, De Haas H, De Stigter HC, Lykke-Andersen H, Kouvaev I. 2003. Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Marine Geology, 198, 67–81. doi: 10.1016/S0025-3227(03)00095-1

    CrossRef Google Scholar

    [81] Wang JL, Sain K, Wang XJ, Satyavani N, Wu SG. 2014. Characteristics of bottom-simulating reflectors for Hydrate-filled fractured sediments in Krishna-Godavari basin, eastern Indian margin. Journal of Petroleum Science and Engineering, 122, 515–523. doi: 10.1016/j.petrol.2014.08.014

    CrossRef Google Scholar

    [82] Wang JL, Wu SG, Kong X, Ma BJ, Li W, Wang DW, Gao JW, Chen WL. 2018a. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 168, 17–26. doi: 10.1016/j.jseaes.2018.06.001

    CrossRef Google Scholar

    [83] Wang JL, Wu SG, Yao YJ. 2018b. Quantifying gas hydrate from microbial methane in the South China Sea. Journal of Asian Earth Sciences, 168, 48–56. doi: 10.1016/j.jseaes.2018.01.020

    CrossRef Google Scholar

    [84] Wang XD, Huang HW, Sun YD, Li N, Hu Y, Feng D. 2017. Recent progress on submarine cold seep activity of the northern Indian Ocean. Journal of tropical oceanography, 36(6), 82–89 (in Chinese with English abstract).

    Google Scholar

    [85] Wang XJ, Wu SG, Dong DD, Gong YH, Chai C. 2008. Characteristics of gas chimney and its relationship to gas hydrate in Qiongdongnan Basin. Marine Geology&Quaternary Geology, 28, 103–108 (in Chinese with English abstract).

    Google Scholar

    [86] Wenau S, Spiess V, Pape T, Fekete N. 2015. Cold seeps at the salt front in the Lower Congo Basin Ⅱ: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage. Marine and Petroleum Geology, 67, 880–893. doi: 10.1016/j.marpetgeo.2014.09.021

    CrossRef Google Scholar

    [87] White R, Klitgord K. 1976. Sediment deformation and plate tectonics in the Gulf of Oman. Earth and Planetary Science Letters, 32, 199–209. doi: 10.1016/0012-821X(76)90059-5

    CrossRef Google Scholar

    [88] Wiedicke M, Neben S, Spiess V. 2001. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geology, 172, 57–73. doi: 10.1016/S0025-3227(00)00127-4

    CrossRef Google Scholar

    [89] Wood W, Hart P, Hutchinson D, Dutta N, Snyder F, Coffin R, Gettrust J. 2008. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery. Marine and Petroleum Geology, 25(9), 952–959. doi: 10.1016/j.marpetgeo.2008.01.015

    CrossRef Google Scholar

    [90] Zhang RW, Lu JA, Wen PF, Kuang ZG, Zhang BJ, Xue H, Xu YX, Chen X. 2018. Distribution of gas hydrate reservoir in the first production test region of the Shenhu area, South China Sea. China Geology, 1, 493–504. doi: 10.31035/cg2018049

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1872) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint