2019 Vol. 2, No. 3
Article Contents

Xi Mei, Ri-hui Li, Xun-hua Zhang, Zhong-bo Wang, Yong Zhang, 2019. Reconstruction of phytoplankton productivity and community structure in the South Yellow Sea, China Geology, 2, 315-324. doi: 10.31035/cg2018091
Citation: Xi Mei, Ri-hui Li, Xun-hua Zhang, Zhong-bo Wang, Yong Zhang, 2019. Reconstruction of phytoplankton productivity and community structure in the South Yellow Sea, China Geology, 2, 315-324. doi: 10.31035/cg2018091

Reconstruction of phytoplankton productivity and community structure in the South Yellow Sea

More Information
  • The sedimentary environment and ecological system in the South Yellow Sea (SYS) changed dramatically due to sea level change caused by glacial-interglacial cycles. The authors report the use of marine biomarkers (brassicasterol, dinosterol and C37 alkenones) and terrigenous biomarkers (C28+C30+C32 n-alkanols) in core DLC70-3 from the SYS to reconstruct the variation in the phytoplankton productivity and community structure and possible mechanisms during the middle Pleistocene. The results show that the primary productivity and that of single algae presented a consistent trend for the whole core during the middle Pleistocene, which was high during interglacial periods and low during glacial periods, with the highest being in marine isotope stage (MIS) 5–9 and MIS 19–21. The main reason is that the Yellow Sea Warm Current (YSWC) carried much of high temperature, high salinity water into the SYS, causing upwelling and vertical mixing and stirring, which increased the nutrient supply in the photosynthetic layer. The phytoplankton community structure mainly showed an increase in the relative content of haptophytes in MIS 5–9 and MIS 19–21, while the relative content of diatoms and dinoflagellates decreased; there was no evidence for a haptophyte content in other stages. The results reveal a shift from a coccolitho-phorid-dominated community during MIS 5–9 and MIS 19–21 to a diatom-dominated community during the other stages, mainly as a result of surface salinity variation, attributed to the invasion of the YSWC during high sea level periods.

  • 加载中
  • [1] Archer D, Winguth A, Lea D, Mahowald N. 2000. What caused the glacial/interglacial atmospheric pCO2 cycles? Reviews of Geophysics, 38(2), 159–189. doi: 10.1029/1999RG000066

    CrossRef Google Scholar

    [2] Budziak D, Schneider RR, Rostek F, Müller PJ, Bard E, Wefer G. 2000. Late Quaternary insolation forcing on total organic carbon and C37 alkenone variations in the Arabian Sea. Paleoceanography, 15(3), 307–321. doi: 10.1029/1999PA000433

    CrossRef Google Scholar

    [3] Calvo E, Pelejero C, Logan GA, De Deckker P. 2004. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography, 19, PA2020. doi: 10.1029/2003PA000992.

    CrossRef Google Scholar

    [4] Chen CTA, Borges AV. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II, 56(8), 578–590.

    Google Scholar

    [5] Chen YLL, Chen HY, Chung CW. 2007. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Research Part II, 54(14), 1617–1633.

    Google Scholar

    [6] Dymond J, Suess E, Lyle M. 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163–181. doi: 10.1029/92PA00181

    CrossRef Google Scholar

    [7] Feng X, Duan S, Shi X, Liu S, Zhao M, Yang H, Zhu D, Wang K. 2013. Changes in phytoplankton productivity and impacts on environment in the Zhejiang coastal mud area during the last 100 years. Acta Oceanogica Sinica, 35(4), 155–161.

    Google Scholar

    [8] Fu M, Wang Z, Sun P, Li Y, Li R. 2009. Size structure and potential export of phytoplankton primary production in the southern Huanghai (Yellow Sea). Acta Oceanologica Sinica, 31(6), 100–109.

    Google Scholar

    [9] Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2012. The Geologic Time Scale 2012. Elsevier, U.K., pp. 1-1144.

    Google Scholar

    [10] Harris P, Zhao M, Rosell-Melé A, Tiedemann R, Sarnthein M, Maxwell J. 1996. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature, 383(6595), 63–65. doi: 10.1038/383063a0

    CrossRef Google Scholar

    [11] He J, Zhao M, Li L, Wang H, Wang PX. 2008. Biomarker evidence of relatively stable community structure in the northern South China Sea during the last glacial and Holocene. Terrestrial, Atmospheric and Oceanic Sciences, 19(4), 377–387. doi: 10.3319/TAO.2008.19.4.377(IMAGES)

    CrossRef Google Scholar

    [12] He J, Zhao M, Wang P, Li L, Li Q. 2013. Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 392(15), 312–323.

    Google Scholar

    [13] Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49(2), 81–115.

    Google Scholar

    [14] Huo Y, Sun S, Zhang F, Wang M, Li C, Yang B. 2012. Biomass and estimated production properties of size-fractionated zooplankton in the Yellow Sea, China. Journal of Marine Systems, 94(6), 1–8.

    Google Scholar

    [15] Kim D, Park BK, Shin I. 1998. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary. Geo-Marine Letters, 18(3), 189–194. doi: 10.1007/s003670050067

    CrossRef Google Scholar

    [16] Lin HL, Lai CT, Ting HC, Wang L, Sarnthein M, Hung JJ. 1999. Late Pleistocene nutrients and sea surface productivity in the South China Sea: A record of teleconnections with Northern Hemisphere events. Marine Geology, 156(1), 197–210.

    Google Scholar

    [17] Liu C, Wang P, Tian J, Cheng X. 2008. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea. Marine Micropaleontology, 69(1), 42–51. doi: 10.1016/j.marmicro.2007.11.008

    CrossRef Google Scholar

    [18] Liu J, Saito Y, Kong X, Wang H, Wen C, Yang Z. 2010. Nakashima R. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea. Marine Geology, 278(1), 54–76.

    Google Scholar

    [19] Mask AC, O’Brien JJ, Preller R. 1998. Wind-driven effects on the Yellow Sea Warm Current. Journal of Geophysical Research, 103(C13), 30713–30729. doi: 10.1029/1998JC900007

    CrossRef Google Scholar

    [20] Mei X, Zhang X, Li R. 2013. Distribution of Late Quaternary benthic foraminifera in South Yellow Sea and its implication of paleo-water mass. Geological review, 59(6), 1024–1034.

    Google Scholar

    [21] Mei X, Li R, Zhang X, Liu Q, Liu J, Wang Z, Lan X, Liu J, Sun R. 2016. Evolution of the Yellow Sea Warm Current and the Yellow Sea Cold Water Mass since the Middle Pleistocene. Palaeogeography Palaeoclimatology Palaeoecology, 442, 48–60. doi: 10.1016/j.palaeo.2015.11.018

    CrossRef Google Scholar

    [22] Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752), 1293–1298. doi: 10.1126/science.1116412

    CrossRef Google Scholar

    [23] Muller-Karger FE, Varela R, Thunell R, Luerssen R, Hu C, Walsh JJ. 2005. The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32(1), L01602. doi: 10.1029/2004GL021346

    CrossRef Google Scholar

    [24] Paytan A, Griffith EM. 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II, 54(5), 687–705. doi: 10.1016/j.dsr.2007.02.004

    CrossRef Google Scholar

    [25] Qiao F, MA J, Xia C, Yang Y, Yuan Y. 2006. Influence of the surface wave induced and tidal mixing on vertical temperature of the Yellow and East China Seas in summer. Progress in Natural Science, 16(7), 739–746. doi: 10.1080/10020070612330062

    CrossRef Google Scholar

    [26] Ragueneau O, Tréguer P, Leynaert A, Anderson R, Brzezinski M, DeMaster D, Dugdale R, Dymond J, Fischer G, Francois R. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4), 317–365. doi: 10.1016/S0921-8181(00)00052-7

    CrossRef Google Scholar

    [27] Rui X, Liu C, Liang D, Zhao M. 2011. Distribution of calcareous nannofossils in the surface sediments of the Southern Yellow Sea. Marine Geology and Quaternary Geology, 31(5), 89–93. doi: 10.3724/SP.J.1140.2011.05089

    CrossRef Google Scholar

    [28] Schlesinger WH, Melack JM. 1981. Transport of organic carbon in the world's rivers. Tellus, 33(2), 172–187. doi: 10.3402/tellusa.v33i2.10706

    CrossRef Google Scholar

    [29] Schubert C, Villanueva J, Calvert S, Cowie G, Von Rad U, Schulz H, Berner U, Erlenkeuser H. 1998. Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years. Nature, 394(6693), 563–566. doi: 10.1038/29047

    CrossRef Google Scholar

    [30] Schulte S, Bard E. 2003. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian Ocean sediments. Quaternary Science Reviews, 22(15), 1757–1770.

    Google Scholar

    [31] Seki O, Ikehara M, Kawamura K, Nakatsuka T, Ohnishi K, Wakatsuchi M, Narita H, Sakamoto T. 2004. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography, 19(1), PA1016. doi: 10.1029/2002PA000808

    CrossRef Google Scholar

    [32] Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407(6806), 859–869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [33] Son S, Campbell J, Dowell M, Yoo S, Noh J. 2005. Primary production in the Yellow Sea determined by ocean color remote sensing. Marine Ecology Progress Series, 303(11), 91–103.

    Google Scholar

    [34] Tao S, Xing L, Luo X, Wei H, Liu Y, Zhao M. 2012. Alkenone distribution in surface sediments of the southern Yellow Sea and implications for the Uk37 thermometer. Geo-Marine Letters, 32(1), 61–71. doi: 10.1007/s00367-011-0251-1

    CrossRef Google Scholar

    [35] Thunell R, Qingmin M, Calvert S, Pedersen T. 1992. Glacial-Holocene Biogenic Sedimentation Patterns in the South China Sea: Productivity Variations and Surface Water pCO2. Paleoceanography, 7(2), 143–162. doi: 10.1029/92PA00278

    CrossRef Google Scholar

    [36] Van der Meer MTJ, Sangiorgi F, Baas M, Brinkhuis H, Sinninghe Damsté JS, Schouten S. 2008. Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of the Black Sea. Earth and Planetary Science Letters, 267(3), 426–434.

    Google Scholar

    [37] Wakeham SG, Peterson ML, Hedges JI, Lee C. 2002. Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean. Deep Sea Research Part II, 49(12), 2265–2301. doi: 10.1016/S0967-0645(02)00037-1

    CrossRef Google Scholar

    [38] Wang F, Xing L, Zhang H, Zhang T, Ding L, Chen W, Hu Z, Zhao M. 2012. Applications of lipid biomarkers for reconstructing changes of phytoplankton ecological structure and terrestrial input in core DH5-1 from the shelf of the East China Sea during the last 150 years. Periodical of Ocean University of China, 42(11), 66–72.

    Google Scholar

    [39] Wang P, Cheng X. 1988. Distribution of nannoplanktonic fossil in surface sediments of the East China Sea. Acta Oceanologica Sinica, 10(1), 76–85.

    Google Scholar

    [40] Wang R, Li J. 2003. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea. Chinese Science Bulletin, 48(4), 363–367.

    Google Scholar

    [41] Werne JP, Hollander DJ, Lyons TW, Peterson LC. 2000. Climate induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography, 15(1), 19–29. doi: 10.1029/1998PA000354

    CrossRef Google Scholar

    [42] Xiang R, Yang Z, Saito Y, Fan D, Chen M, Guo Z, Chen Z. 2008. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: benthic foraminiferal and stable isotopic evidence. Marine Micropaleontology, 67(1), 104–119.

    Google Scholar

    [43] Xing L, Zhao M, Zhang H, Liu Y, Shi X. 2008. Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka. Chinese Science Bulletin, 53(16), 2552–2559.

    Google Scholar

    [44] Xing L, Zhao M, Zhang H, Sun Y, Tang Q, Yu Z, Sun X. 2009. Biomarker records of phytoplankton community structure changes in the Yellow Sea over the last 200 years. Periodical of Ocean University of China, 30(2), 317–322.

    Google Scholar

    [45] Xing L, Tao S, Zhang H, Liu Y, Yu Z, Zhao M. 2011a. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea. Applied Geochemistry, 26(8), 1584–1593. doi: 10.1016/j.apgeochem.2011.06.024

    CrossRef Google Scholar

    [46] Xing L, Zhang R, Liu Y, Zhao X, Liu S, Shi X, Zhao M. 2011b. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr. Quaternary Science Reviews, 30(19), 2666–2675.

    Google Scholar

    [47] Xing L, Zhao M, Zhang H, Zhao X, Zhao X, Yang Z, Liu C. 2012. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years. Chinese Journal of Oceanology and Limnology, 30(1), 1–11. doi: 10.1007/s00343-012-1045-7

    CrossRef Google Scholar

    [48] Yang SY, Jung HS, Lim DI, Li CX. 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63(1), 3–120.

    Google Scholar

    [49] Yuan Y, Su J. 1984. Numerical modelling of the circulation in the East China Sea.In: Ichiiye, T.(Ed.), Ocean Hydrodynamics of Japan and East China Sea. Elsevier Oceanography Series, vol. 39. Elsevier, New York, pp. 167-186.

    Google Scholar

    [50] Yuan Z, Xing L, Li L, Zhang H, Xiang R, Zhao M. 2013. Biomarker records of phytoplankton productivity and community structure changes during the last 14000 years in the mud area southwest off Cheju Island, East China Sea. Journal of Ocean University of China, 12(4), 611–618. doi: 10.1007/s11802-013-2230-9

    CrossRef Google Scholar

    [51] Zhang J, Wang P, Li Q, Cheng X, Jin, H., Zhang, S. 2007. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A. Marine Micropaleontology, 64(3), 121–140.

    Google Scholar

    [52] Zhao M, Mercer JL, Eglinton G, Higginson MJ, Huang CY. 2006. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa. Organic Geochemistry, 37(1), 72–97. doi: 10.1016/j.orggeochem.2005.08.022

    CrossRef Google Scholar

    [53] Zhao X, Tao S, Zhang R, Zhang H, Yang Z, Zhao M. 2013. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the mid-late Holocene. Journal of Ocean University of China, 12(4), 639–646. doi: 10.1007/s11802-013-2271-0

    CrossRef Google Scholar

    [54] Zhang S, Wang Q, Lu Y, Cui H, YuanY. 2008. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998. Continental Shelf Research, 28(3), 442–457. doi: 10.1016/j.csr.2007.10.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1514) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint