Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2023 Vol. 11, No. 1
Article Contents

Irfan Muhammad, Safrina Sri, Koriyanti Erry, Kurniawati Netty, Saleh Khairul, Iskandar Iskhaq. 2023. Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia. Journal of Groundwater Science and Engineering, 11(1): 81-88. doi: 10.26599/JGSE.2023.9280008
Citation: Irfan Muhammad, Safrina Sri, Koriyanti Erry, Kurniawati Netty, Saleh Khairul, Iskandar Iskhaq. 2023. Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia. Journal of Groundwater Science and Engineering, 11(1): 81-88. doi: 10.26599/JGSE.2023.9280008

Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia

More Information
  • Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra. Factors that affect the natural disasters on peatlands include rainfall, groundwater level, and soil moisture. This paper aims to study the effect of the climate anomalies in 2019 and 2020 and effects of these influencing factors on peatlands in South Sumatra. The data used in this study was derived from in-situ measurement at two SESAME’s measurement stations in the study area. The results indicate that in the 2019 dry season, the rainfall was minimal, the lowest groundwater table depth was −1.14 m and the lowest soil moisture was 3.4%. In the 2020 dry season, rainfall was above the monthly average of 100 mm, the lowest groundwater level was −0.44 m, and the lowest soil moisture was 26.64%. There is also a strong correlation between soil moisture and groundwater table depth. The correlation between the two is stronger when there is less rainfall.

  • 加载中
  • Adinugroho WC, Imanuddin R, Krisnawati H, et al. 2021. Exploring the potential of soil moisture maps using Sentinel Imagery as a Proxy for groundwater depths in peat. IOP Conference Series: Earth and Environmental Science, 874(1). https://doi.org/10.1088/1755-1315/874/1/012011

    Google Scholar

    Cai W, Ng B, Wang G, et al. 2022. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 12(3): 228−231. DOI:10.1038/s41558-022-01282-z.

    CrossRef Google Scholar

    Cao T, Zheng F, Fang X. 2022. Key processes on triggering the moderate 2020/21 La Niña event as depicted by the clustering approach. Frontiers in Earth Science, 10: 1−12. DOI:10.3389/feart.2022.822854.

    CrossRef Google Scholar

    Hasudungan P, Irham I, Utami AW. 2021. The impact of el nino southern oscillation and covid-19 on the rice price dynamics in Indonesia: The vector error correction model approach. IOP Conference Series: Earth and Environmental Science, 883(1). https://doi.org/10.1088/1755-1315/883/1/012061

    Google Scholar

    Hayashi M, Jin FF, Stuecker MF. 2020. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, 11(1): 1−10. DOI:10.1038/s41467-020-17983-y.

    CrossRef Google Scholar

    Hendrawan IG, Asai K, Triwahyuni A, et al. 2019. The interannual rainfall variability in Indonesia corresponding to El Niño Southern Oscillation and Indian Ocean Dipole. Acta Oceanologica Sinica, 38(7): 57−66. DOI:10.1007/s13131-019-1457-1.

    CrossRef Google Scholar

    Huang P, Zheng XT, Ying J. 2019. Disentangling the changes in the Indian Ocean dipole-related SST and rainfall variability under global warming in CMIP5 models. Journal of Climate, 32(13): 3803−3818. DOI:10.1175/JCLI-D-18-0847.1.

    CrossRef Google Scholar

    Hugron S, Guêné-Nanchen M, Roux N, et al. 2020. Plant reintroduction in restored peatlands: 80% successfully transferred – Does the remaining 20% matter? Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01000

    Google Scholar

    Irfan M, Koriyanti E, Awaluddin Ariani M, et al. 2021. Determination of soil moisture reduction rate on peatlands in South Sumatera due to the 2019 extreme dry season. IOP Conference Series: Earth and Environmental Science, 713(1). https://doi.org/10.1088/1755-1315/713/1/012025

    Google Scholar

    Irfan M, Safrina E, Koriyanti E, et al. 2022. What are the dynamics of hydrometeorological parameters on peatlands during the 2019 extreme dry season? Journal of Physics: Conference Series, 2165(1). https://doi.org/10.1088/1742-6596/2165/1/012003

    Google Scholar

    Irfan M, Satya OC, Arsali Ariani M, et al. 2021. What is the rate of groundwater depth decline on peatlands in South Sumatera during the 2019 extreme dry season? Journal of Physics: Conference Series, 1816(1): 012008. https://doi.org/10.1088/1742-6596/1816/1/012008

    Google Scholar

    Irfan M. 2019. Some insight into direct observation of hydrological parameters in peatland area of the South Sumatera. International Journal of Geomate, 17(60): 124−129. DOI:10.21660/2019.60.8176.

    CrossRef Google Scholar

    Irfan M, Mardiansyah W, Ariani M, et al. 2019. Is TRMM product good proxy for gauge precipitation over peatland area of the South Sumatera? Journal of Physics: Conference Series, 1282: 012021. https://doi.org/10.1088/1742-6596/1282/1/012021

    Google Scholar

    Irfan M, Mardiansyah W, Surbakti H, et al. 2020. Spatio-temporal variability of observed ground water level at peat hydrology unit in South Sumatera. Journal of Computational and Theoretical Nanoscience, 17(2): 1414−1421. DOI:10.1166/jctn.2020.8819.

    CrossRef Google Scholar

    Ivan AH, Abdul C, Bagus P. 2020. The modelling of groundwater table management for canal blocking scenarios in sub peatland hydrological unit. International Journal of Science, Technology & Management, 1(4): 289–297. https://doi.org/10.46729/ijstm.v1i4.67

    Google Scholar

    Kirana AP, Sitanggang IS, Syaufina L. 2016. Hotspot pattern distribution in peatland area in sumatera based on spatio temporal clustering. Procedia Environmental Sciences, 33: 635−645. DOI:10.1016/j.proenv.2016.03.118.

    CrossRef Google Scholar

    Lu X, Zhang X, Li F, et al. 2021. Drainage canal impacts on smoke aerosol emissions for Indonesian peatland and non-peatland fires. Environmental Research Letters, 16(9). https://doi.org/10.1088/1748-9326/ac2011

    Google Scholar

    Mandailing PM, Mardiansyah W, Irfan M, et al. 2020. Characteristics of diurnal rainfall over peatland area of South Sumatra, Indonesia. Science and Technology Indonesia, 5(4): 136. DOI:10.26554/sti.2020.5.4.136-141.

    CrossRef Google Scholar

    Millard K, Thompson DK, Parisien MA, et al. 2018. Soil moisture monitoring in a temperate peatland using multi-sensor remote sensing and linear mixed effects. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060903

    Google Scholar

    Muhammad FR, Lubis SW, Tiarni I, et al. 2019. Influence of the Indian Ocean Dipole (IOD) on convectively coupled Kelvin and Mixed Rossby-Gravity waves. IOP Conference Series: Earth and Environmental Science, 284(1). https://doi.org/10.1088/1755-1315/284/1/012012

    Google Scholar

    Purnamayani R, Tarigan SD, Sudradjat, et al. 2022. Peatland characteristics and oil palm productivity at Siak Regency, Riau Province. IOP Conference Series: Earth and Environmental Science, 950(1). https://doi.org/10.1088/1755-1315/950/1/012025

    Google Scholar

    Puryajati AD, Wirasatriya A, Maslukah L, et al. 2021. The effect of ENSO and IOD on the variability of sea surface temperature and rainfall in the Natuna Sea. IOP Conference Series: Earth and Environmental Science, 750(1): 4−12. DOI:10.1088/1755-1315/750/1/012020.

    CrossRef Google Scholar

    Putra R, Nufutomo TK, Lisafitri Y, et al. 2021. Did the 2019 fire events in South Sumatra Occur predominantly on Peatlands? IOP Conference Series: Earth and Environmental Science, 830(1): 8–12. https://doi.org/10.1088/1755-1315/830/1/012039

    Google Scholar

    Putra R, Sutriyono E, Kadir S, et al. 2019. Understanding of fire distribution in the South Sumatra peat area during the last two decades. International Journal of Geomate, 16(54): 2186−2990. DOI:10.21660/2019.54.8243.

    CrossRef Google Scholar

    Reddy PJ, Perkins-Kirkpatrick SE, Sharples JJ. 2022. Interactive influence of ENSO and IOD on contiguous heatwaves in Australia. Environmental Research Letters, 17(1). https://doi.org/10.1088/1748-9326/ac3e9a

    Google Scholar

    Sankar S, Thondithala Ramachandran A, Franck Eitel KG, et al. 2019. The influence of tropical Indian Ocean warming and Indian Ocean Dipole on the surface chlorophyll concentration in the eastern Arabian Sea. Biogeosciences Discussions (June Preprint): 1–23. https://doi.org/10.5194/bg-2019-169

    Google Scholar

    Shi W, Wang M. 2021. A biological Indian Ocean Dipole event in 2019. Scientific Reports, 11(1): 1−8. DOI:10.1038/s41598-021-81410-5.

    CrossRef Google Scholar

    Suryadi Y, Soekarno I, Humam IA. 2021. Effectiveness analysis of canal blocking in sub-peatland hydrological unit 5 and 6 kahayan sebangau, central kalimantan, indonesia. Journal of Engineering and Technological Sciences, 53(2). https://doi.org/10.5614/j.eng.technol.sci.2021.53.2.5

    Google Scholar

    Sutikno S, Rinaldi R, Putri RA, et al. 2020. Study on the impact of canal blocking on groundwater fluctuation for tropical peatland restoration. IOP Conference Series: Materials Science and Engineering, 933(1). https://doi.org/10.1088/1757-899X/933/1/012052

    Google Scholar

    Turmudi, Saharjo BH, Prasetyo LB, et al. 2019. Spatial model of peatland fire control strategies through peat maturity level approach: Case Study of the Kepulauan Meranti District. IOP Conference Series: Earth and Environmental Science, 399(1). https://doi.org/10.1088/1755-1315/399/1/012022

    Google Scholar

    Wang Y, Yang J, Chen Y, et al. 2018. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Scientific Reports, 8(1): 1−9. DOI:10.1038/s41598-018-30669-2.

    CrossRef Google Scholar

    Widiarso B, Minardi S, Komariah K, et al. 2020. Predicting peatland groundwater table and soil moisture dynamics affected by drainage level. Sains Tanah, 17(1): 42−49. DOI:10.20961/stjssa.v17i1.38459.

    CrossRef Google Scholar

    Wijaya A, Zakiyah U, Sambah AB, et al. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali strait, Indonesia. Biodiversitas, 21(11): 5283−5290. DOI:10.13057/biodiv/d211132.

    CrossRef Google Scholar

    Yulnafatmawita, Syahputri SD, Hermansah. 2021. Degree of peatland maturity at different land use types in Kinali, West Sumatra Indonesia. IOP Conference Series: Earth and Environmental Science, 1025. International Seminar on Tropical Peatlands. https://doi.org/10.1088/1755-1315/1025/1/012013

    Google Scholar

    Yuwati TW, Rachmanadi D, Pratiwi Turjaman M, et al. 2021. Restoration of degraded tropical peatland in indonesia: A review. Land, 10(11): 1−31. DOI:10.3390/land10111170.

    CrossRef Google Scholar

    Zheng Y, Rugenstein M, Pieper P, et al. 2022. EGUsphere - Insignificant but robust decrease of ENSO predictability in an equilibrium warmer climate, 5 (March). https://egusphere.copernicus.org/preprints/2022/egusphere-2022-89/

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1017) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint