Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2023 Vol. 11, No. 1
Article Contents

Song Shu-hong, Nie Zhen-long, Geng Xin-xin, Shen Xue, Wang Zhe, Zhu Pu-cheng. 2023. Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River. Journal of Groundwater Science and Engineering, 11(1): 89-96. doi: 10.26599/JGSE.2023.9280009
Citation: Song Shu-hong, Nie Zhen-long, Geng Xin-xin, Shen Xue, Wang Zhe, Zhu Pu-cheng. 2023. Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River. Journal of Groundwater Science and Engineering, 11(1): 89-96. doi: 10.26599/JGSE.2023.9280009

Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River

More Information
  • The objective of this study was to analyze the response of runoff in the area of runoff yield of the upstream Shiyang River basin to climate change and to promote sustainable development of regional water resources and ecological environment. As the biggest tributary of the Shiyang River, Xiying River is the only hydrological station (Jiutiaoling) that has provincial natural river and can achieve long time series monitoring data in the basin. The data obtained from this station is representative of natural conditions because it has little human activites. This study built a regression model through identifying the characteristics of runoff and climate change by using Mann-Kendall nonparametric statistical test, cumulative anomaly, and correlation analysis. The results show that the average annual runoff is 320.6 million m3/a with the coefficient of variation of 0.18 and shows slightly decrease during 1956–2020. It has a significant positive correlation the average annual precipitation (P<0.01). Runoff is sensitive to climate change, and the climate has becoming warm and wet and annual runoff has entering wet period from 2003. Compared to the earlier period (1955–2000), the increases of average annual temperature, precipitation and runoff in recent two decades were 15%, 9.3%, and 7.8%, respectively. Runoff in the Shiyang River is affected by temperature and precipitation among climate factors, and the simulation results of the runoff-climate response model (R = 0.0052P − 0.1589T + 2.373) indicate that higher temperature leads to a weakening of the ecological regulation of surface runoff in the flow-producing area.

  • 加载中
  • Blue Book on Climate Change in China 2020. China Meteorological News Press, 2020. (in Chinese)

    Google Scholar

    Bongaarts J. 2019. Intergovernmental panel on climate change special report on global warming of 1.5℃ Switzerland: IPCC 2018. Population & Development Review, 45(1): 251−252.

    Google Scholar

    Ding ZY, Ma JZ, Zhang BJ, et al. 2007. Analysis on the climate change in the Shiyang River Basin since regent 50 years. Arid Zone Research, 24(6): 779−784. (in Chinese) DOI:10.13866/j.azr.2007.06.009.

    CrossRef Google Scholar

    Gao YP, Yao XJ, Liu SY, et al. 2019. Spatial-temporal variation of glacier resources in the Hexi interior from 1956 to 2017. Journal of Glaciology and Geocryology, 41(6): 1313−1325. (in Chinese) DOI:10.7522/j.issn.1000-0240.2019.0054.

    CrossRef Google Scholar

    Guo J, Wang N, Su XL. 2016. Response of runoff to climate change in upstream generation area of Shiyang River basin. Journal of Northwest A&F University (Nat. Sci. Ed. ), 44: 315(12): 211−218. DOI:10.13207/j.cnki.jnwafu.2016.12.029.

    CrossRef Google Scholar

    IPCC. 2021. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V, Zhai P, Pirani A, et al.

    Google Scholar

    Jiang ZH, He JH, Li JP, et al. 2006. Northerly advancement characteristics of the East Asian summer monsoon with its interdecadal variations. Acta Geographica Sinica, 61(7): 675-686. (in Chinese) Doi: CNKI:SUN:DLXB.0.2006-07-001

    Google Scholar

    Ji F, Wu ZH, Huang JP, et al. 2014. Evolution of land surface air temperature trend. Nature Climate Change, 4(6): 462−466. DOI:10.1038/nclimate2223.

    CrossRef Google Scholar

    Lan YC, Hu XL, Ding HW, et al. 2014. Multiple time scales analysis of jump and variation of air temperature in mountain area of Hexi inland River Basin in the past more than 50 years. Mountain Research, 32(2): 163−170. (in Chinese) DOI:10.3969/j.issn.1008-2786.2014.02.005.

    CrossRef Google Scholar

    Kahya E&S. Kalayci. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology, 289: 128−144. DOI:10.1016/j.jhydrol.2003.11.006.

    CrossRef Google Scholar

    Kendall MG. 1990. Rank correlation methods. British Journal of Psychology, 25(1): 86−91.

    Google Scholar

    Lan YC, Kang ES, 2000. Changing trend and features of the runoff frommountain areas of some main rivers in the Hexi inland region, Journal of Glaciology and Geocryology, 22(2): 147-152.

    Google Scholar

    Li ZX, Li YG, Feng Q, et al. 2017. Contribution from cryosphere meltwater to runoff and its influence in Shiyang River Basin. Quaternary Sciences, 37(5): 1045−1054. (in Chinese) DOI:10.11928/j.issn.1001-7410.2017.05.12.

    CrossRef Google Scholar

    Liu CZ. 2010. Some points of view on detection and attribution of observed changes in hydrological cycle under global warming. Climate Change Research, 6(05): 313−318. (in Chinese)

    Google Scholar

    Liu M, Nie ZL, Cao L, et al. 2021. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed. Journal of Groundwater Science and Engineering, 9(4): 326−340. DOI:10.19637/j.cnki.2305-7068.2021.04.006.

    CrossRef Google Scholar

    Ma HW, Wang NA. 2010. The response of runoff of Shiyang River Basin in mountain foot to climate change. Journal of Arid Land Resources and Environment, 24(01): 113−117. (in Chinese) DOI:10.13448/j.cnki.jalre.2010.01.003.

    CrossRef Google Scholar

    Matin MA, Bourque CPA. 2015. Mountain-river runoff components and their role in the seasonal development of desert-oases in Northwest China. Journal of Arid Environment, 122(2015): 15−27. DOI:10.1016/j.jaridenv.2015.05.011.

    CrossRef Google Scholar

    Pan BT, Cao B, Guan WJ. 2021. Changes of Ningchan No. 1 Glacier in Lenglongling, eastern Qilian Mountains from 2010 to 2020 based on observation. Journal of Glaciology and Geocryology, 43(3): 864−873. (in Chinese) DOI:10.1017/jog.2017.70.

    CrossRef Google Scholar

    Ren GY. 2007. Climate change and water resource in China. Beijing: Meteorology Press. (in Chinese)

    Google Scholar

    Savabi MR, Stockle CO. 2001. Modeling the possible impact of increased CO2 and temperature on soil water balance, crop yield and soil erosion. Environmental Modeling & Software, 16(7): 631−640. DOI:10.1016/S1364-8152(01)00038-X.

    CrossRef Google Scholar

    Shen DJ, Liu CM. 1998. Hydrological and water resources responses to climatic change a review. Geographica Research, 17(04): 435−443. (in Chinese)

    Google Scholar

    Shi YF, Shen YP, Kang E, et al. 2007. Recent and future climate change in northwest China. Climate Change, 80(3/4): 379−393. (in Chinese)

    Google Scholar

    Song SH, Xie Y, Nie ZL, et al. 2022. A solid reservoir that gradually dries up—The melting of glaciers in the Shiyang River Basin. Scientific and Cultural Popularization of Natural Resources, 0(2): 32−35. (in Chinese)

    Google Scholar

    Song C, Liu M, Dong QY, et al. 2022. Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition. Journal of Groundwater Science and Engineering, 10(1): 19−32. DOI:10.19637/j.cnki.2305-7068.2022.01.003.

    CrossRef Google Scholar

    Sun MP, Liu SY, Yao XJ, et al. 2018. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. Journal of Geographical Science, 28(02): 206−220. DOI:10.1007/s11442-018-1468-y.

    CrossRef Google Scholar

    Wei FY. 2007. Modern Climate Statistical Diagnosis and Prediction Technology. Beijing: Meteorological Press. China. (in Chinese)

    Google Scholar

    Xu QY, Guo H, Yin XZ, et al. 2007. Climate evolution in the Shiyang River Basin of China since 10 ka BP. Journal of glaciology and geocryology, 29(4): 617−625. (in Chinese)

    Google Scholar

    Zhang SQ, Gao X, Zhang XW. 2015. Glacial runoff likely reached peak in the Mountainous areas of the Shiyang River basin. Journal of Mountain Science, 12(2): 382−395. DOI:10.1007/s11629-014-3077-2.

    CrossRef Google Scholar

    Zhang F, Chen QM, SU JJ, et al. 2017. Tree-ring recorded of the drought variability in the northwest monsoon marginal, China. Journal of Glaciology and Geocryology, 39(2): 245−251. (in Chinese) DOI:10.7522/j.issn.1000-0240.2017.0028.

    CrossRef Google Scholar

    Zhang XF, Shu Q, Li C. 2012. Rules of runoff variation of Yark and River in recent 48 years. Journal of Arid Land Resources and Environment, 26(1): 93−97. (in Chinese) DOI:10.1007/s11783-011-0280-z.

    CrossRef Google Scholar

    Zhou JJ, Huang JM, Xi Z, et al. 2020. Changes of extreme temperature and its influencing factors in Shiyang River Basin, Northwest China. Atmosphere, 11(11): 1171.

    Google Scholar

    Zhou JJ, Shi W, Shi PJ, et al. 2012. Characteristics of mountainous runoff and its responses to climate change in the upper reaches of Shiyang river basin during 1956-2009. Journal of Lanzhou University (Natural Sciences), 48(1): 27−34. (in Chinese) DOI:10.1109/ICMSS.2011.5998949.

    CrossRef Google Scholar

    Zuo HC, Lyu SH, Hu YJ. 2004. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years. Plateau Meteorology, 23(2): 238−224. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(887) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint