Citation: | SUN Cai, TIE Yongbo, NING Zhijie, XU Wei, XIONG Xiaohui. 2024. Landslide susceptibility mapping in Xide County, Sichuan Province based on frequency ratio-support vector machine coupling model. Sedimentary Geology and Tethyan Geology, 44(3): 547-559. doi: 10.19826/j.cnki.1009-3850.2024.08002 |
This study addresses the critical issue of selecting factor classification base data and evaluation models for landslide susceptibility mapping, focusing on Xide County in Sichuan Province, a region frequently affected by landslide hazards. Utilizing slope units as evaluation units, a correlation analysis of the evaluation factors was conducted, ultimately selecting eleven key factors: elevation, slope angle, curvature, normalized difference vegetation index (NDVI), stream power index (SPI), distance to watercourses, distance to roads, distance to faults, slope structure, engineering geological rock groups, and land use types. Factors were classified using the natural breaks method for both regional point attributes and landslide point attributes. These classified factors were then incorporated into the frequency ratio model and the frequency ratio-support vector machine coupled model to evaluate landslide susceptibility. The precision of these models was validated using receiver operating characteristic (ROC) curves and typical slope analysis. The findings revealed that using landslide-specific attributes as the classification base data within the coupled model framework yielded the highest evaluation accuracy, with an area under the ROC curve (SAUC) value of 0.752, indicating a superior predictive capability for landslide susceptibility. The simulation results indicated that areas of extremely high and high susceptibility constitute 4.65% and 23.73% of the study area, respectively, predominantly located in regions characterized by significant topographic relief, well-developed faults, and intense human engineering activities. Conversely, regions with sparse faults and low population density were categorized as medium and low susceptibility zones, accounting for 44.20% and 27.42% of the study area, respectively. These findings provide essential scientific insights and references for the effective assessment and management of landslide susceptibility in Xide County and other similar regions.
[1] | Aditian A,Kubota T,Shinohara Y,2018. Comparison of GIS-based landslide susceptibility models using frequency ratio,logistic regression,and artificial neural network in a tertiary region of Ambon,Indonesia[J]. Geomorphology,318:101 − 111. doi: 10.1016/j.geomorph.2018.06.006 |
[2] | Blais-Stevens A,Behnia P,2016. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor,Canada[J]. Natural Hazards and Earth System Sciences,16(2):449 − 462. doi: 10.5194/nhess-16-449-2016 |
[3] | 高秉海,何毅,张立峰,等,2023. 顾及 InSAR 形变的 CNN 滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报,42(2):450 − 465. Gao B H,He Y,Zhang L F,et al.,2023. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation:A case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,42(2):450 − 465 (in Chinese with English abstract). |
[4] | Huang F M,Yin K L,Huang J S,et al.,2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine[J]. Engineering Geology,223:11 − 22. doi: 10.1016/j.enggeo.2017.04.013 |
[5] | 黄发明,张崟琅,郭子正,等,2024. 不同分级方法对区域滑坡易发性区划的影响[J]. 工程科学与技术,56(1):148−159. Huang F M,Zhang Y L,Guo Z Z,et al.,2024. Effects of different classification methods on regional landslide susceptibility zonation[J]. Advanced Engineering Sciences,56(1):148−159 (in Chinese with English abstract). |
[6] | 蒋文学,李益敏,杨雪,等,2023. 基于斜坡单元的怒江州滑坡易发性研究[J]. 水土保持学报,37:160 − 167. Jiang W X,Li Y M,Yang X,et al.,2023. Study on landslide susceptibility in Nujiang Prefecture based on slope unit[J]. Journal of Soil and Water Conservation,37:160 − 167 (in Chinese with English abstract). |
[7] | 李郎平,兰恒星,郭长宝,等,2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,31:911 − 929. doi: 10.3969/j.issn.1000-8527.2017.05.004 Li L P,Lan H X,Guo C B,et al.,2017. Zoning evaluation of geological disaster susceptibility along the Sichuan-Tibet Railway and its adjacent areas based on improved frequency ratio method[J]. Geoscience,31:911 − 929 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.004 |
[8] | 李倩琳,2021. 基于信息量和随机森林模型的滑坡易发性空间预测研究[D]. 青海师范大学. Li Q L,2021. Spatial prediction of landslide susceptibility based on information quantity and random forest model[D]. Qinghai Normal University (in Chinese with English abstract). |
[9] | 李文彦,王喜乐,2020. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报,29:213 − 220. Li W Y,Wang X L,2020. Application and comparison of frequency ratio and information quantity model in landslide susceptibility evaluation in loess gully region[J]. Journal of Natural Disasters,29:213 − 220 (in Chinese with English abstract). |
[10] | Meten M,Bhandary N P,Yatabe R,et al.,2015. GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia[J]. Journal of Mountain Science,12(6):1355 − 1372. doi: 10.1007/s11629-015-3464-3 |
[11] | Pourghasemi H R,Pradhan B,Gokceoglu C,2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed,Iran[J]. Natural Hazards,63(2):965 − 996. doi: 10.1007/s11069-012-0217-2 |
[12] | 孙德亮,2019. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D]. 华东师范大学. Sun D L,2019. Research on landslide susceptibility zoning and rainfall-induced landslide prediction and early warning based on machine learning[D]. East China Normal University (in Chinese with English abstract). |
[13] | 孙德亮,马祥龙,唐小娅,等,2021. 基于不同因子分级的滑坡易发性区划对比——以万州区为例[J]. 重庆师范大学学报(自然科学版),38(5):43 − 54. Sun D L,Ma X L,Tang X Y,et al.,2021. Comparison of landslide susceptibility zoning based on different factor classifications:Taking Wanzhou District as an example[J]. Journal of Chongqing Normal University (Natural Science),38(5):43 − 54 (in Chinese with English abstract). |
[14] | 铁永波,张宪政,龚凌枫,等,2022a. 西南山区典型地质灾害链成灾模式研究[J]. 地质力学学报,28(6):1071 − 1080. Tie Y B,Zhang X Z,Gong L F,et al.,2022a. Research on the pattern of typical geohazard chains in the southwest mountainous region,China[J]. Journal of Geomechanics,28(6):1071 − 1080 (in Chinese with English abstract). |
[15] | 铁永波,徐伟,向炳霖,等,2022b. 西南地区地质灾害风险“点面双控”体系构建与思考[J]. 中国地质灾害与防治学报,33(3):106 − 113. Tie Y B,Xu W,Xiang B L,et al.,2022b. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control,33(3):106 − 113 (in Chinese with English abstract). |
[16] | 田凡凡,薛喜成,郭有金,2021. 基于主元分析和信息量模型的滑坡易发性评价——以丹凤县为例[J]. 能源与环保,43:6 − 12+24. Tian F F,Xue X C,Guo Y J,2021. Landslide susceptibility assessment based on principal component analysis and information model:A case study of Danfeng County[J]. China Energy and Environmental Protection,43:6 − 12+24 (in Chinese with English abstract). |
[17] | 王家柱,高延超,铁永波,等,2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例[J]. 沉积与特提斯地质, 43(3):640 − 650. Wang J Z,Gao Y C,Tie Y B,et al.,2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns:A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology, 43(3):640 − 650 (in Chinese with English abstract). |
[18] | 王念秦,郭有金,刘铁铭,等,2019. 基于支持向量机模型的滑坡危险性评价[J]. 科学技术与工程,19(35):70 − 78. doi: 10.3969/j.issn.1671-1815.2019.07.013 Wang N Q,Guo Y J,Liu T M,et al.,2019. Landslide hazard assessment based on support vector machine model[J]. Science Technology and Engineering,19(35):70 − 78 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.07.013 |
[19] | 王雪冬,张超彪,王翠,等,2022. 基于 Logistic 回归与随机森林的和龙市地质灾害易发性评价[J]. 吉林大学学报(地球科学版),52:1957 − 1970. Wang X D,Zhang C B,Wang C,et al.,2022. Evaluation of geological disaster susceptibility in Helong City based on Logistic regression and random forest[J]. Journal of Jilin University (Earth Science),52:1957 − 1970 (in Chinese with English abstract). |
[20] | 魏文豪,贾雨霏,盛逸凡,等,2023. 基于 I、SVM、I-SVM 的滑坡灾害易发性评价模型研究[J]. 安全与环境工程,30(3):136 − 144. Wen W H,Jia Y F,Sheng Y F,et al.,2023. Study on landslide susceptibility evaluation model based on I,SVM and I-SVM[J]. Safety and Environmental Engineering,30(3):136 − 144 (in Chinese with English abstract). |
[21] | 吴常润,角媛梅,王金亮,等,2021. 基于频率比−逻辑回归耦合模型的双柏县滑坡易发性评价[J]. 自然灾害学报,30(4):213 − 224. Wu C R,Jiao Y M,Wang J L,et al.,2021. Evaluation of landslide susceptibility in Shuangbai County based on frequency ratio-logistic regression coupling model[J]. Journal of Natural Disasters,30(4):213 − 224 (in Chinese with English abstract). |
[22] | 徐伟,铁永波,郑玄,等,2023a. 凉山州地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质:1 − 17. Xu W,Tie Y B,Zheng X,et al.,2023a. The development characteristics and spatial and temporal distribution of geological disasters in Liangshan Prefecture[J]. Sedimentary Geology and Tethyan Geology:1 − 17 (in Chinese with English abstract). |
[23] | 徐伟,铁永波,王家柱,等,2023b. 四川省喜德县地质灾害“点面双控”体系探索与实践[J]. 中国地质灾害与防治学报,34(5):1 − 9. Xu W,Tie Y B,Wang J Z,et al.,2023b. Exploration and practice of the “dual control of point and zone” system for geological hazards in Xide County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,34(5):1 − 9 (in Chinese with English abstract). |
[24] | 殷跃平,高少华,2024. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,35(1):1 − 18. Yin Y P,Gao S H,2024. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,35(1):1 − 18 (in Chinese with English abstract). |
[25] | 余淙蔚,柳侃,殷杰,等,2022. 一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报,40(1):106 − 119. doi: 10.3969/j.issn.1008-2786.2022.1.sdxb202201009 Yu C W,Liu K,Yin J,et al.,2022. A grid-scale division method suitable for logistic regression model to evaluate the susceptibility of shallow landslides:A case study of shallow landslides in Sanming City,Fujian Province in 2019[J]. Mountain Research,40(1):106 − 119 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2022.1.sdxb202201009 |
[26] | 张文春,2012. 基于支持向量机−可拓学的三峡库区丰都县水库塌岸预测研究[D]. 吉林大学. Zhang W C,2012. Reservoir bank collapse prediction of Fengdu County in reservoir area of Three Gorges based on support vector machine and extenics[D]. Jilin University (in Chinese with English abstract). |
[27] | 张钟远,邓明国,徐世光,等,2022. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,41(1):157 − 171. Zhang Z Y,Deng M G,Xu S G,et al.,2022. Comparative Study on Landslide Susceptibility Evaluation Model in Zhenkang County[J]. Chinese Journal of Rock Mechanics and Engineering,41(1):157 − 171 (in Chinese with English abstract). |
[28] | 赵金彪,杨柳,崔玉龙,等,2024. 基于逻辑回归模型的喜德县滑坡易发性评价[J]. 河南科技,51(1):95 − 99. Zhao J B,Yang L,Cui Y L,et al.,2024. Landslide susceptibility Evaluation of Xide County Based on Logistic Regression Model[J]. Henan Science and Technology,51(1):95 − 99 (in Chinese with English abstract). |
[29] | 周萍,邓辉,张文江,等,2022. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学,42(9):1665 − 1675. Zhou P,Deng H,Zhang W J,et al.,2022. Landslide susceptibility evaluation based on Information Value model and Machine Learning method:A case study of Lixian County,Sichuan Province[J]. Scientia Geographica Sinica,42(9):1665 − 1675 (in Chinese with English abstract). |
[30] | 朱赛楠,殷跃平,铁永波,等,2024. 乌蒙山区巨型古滑坡变形特征与复活机理研究——以大关古滑坡为例[J/OL]. 岩土工程学报,1 − 10. Zhu S N,Yin Y P,Tie Y B,et al.,2024. Deformation Characteristics and Reactivation Mechanism of Giant Ancient Landslide in Wumeng Mountain Area:A case study of the Daguan Ancient Landslide[J/OL]. Chinese Journal of Geotechnical Engineering,1 − 10 (in Chinese with English abstract). |
Location of Xide County and distribution of landslide points
The results of slope unit division in the study area
Pearson correlation coefficient between susceptibility evaluation factors
Influencing factors of landslide in Xide County
Landslide susceptibility zoning map of four evaluation models
Comparison of ROC curves of four evaluation models
Verification of typical slope in Guangming Town
Statistics of landslide susceptibility zoning results in the study area