2024 Vol. 44, No. 3
Article Contents

DAI Yong, MENG Qingkai, CHEN Shilong, LI Wei, YANG Liqiang. 2024. Landslide hazard evaluation based on BPNN-SHAP model: A case study of the Yili River Basin, Xinjiang Province. Sedimentary Geology and Tethyan Geology, 44(3): 534-546. doi: 10.19826/j.cnki.1009-3850.2024.07006
Citation: DAI Yong, MENG Qingkai, CHEN Shilong, LI Wei, YANG Liqiang. 2024. Landslide hazard evaluation based on BPNN-SHAP model: A case study of the Yili River Basin, Xinjiang Province. Sedimentary Geology and Tethyan Geology, 44(3): 534-546. doi: 10.19826/j.cnki.1009-3850.2024.07006

Landslide hazard evaluation based on BPNN-SHAP model: A case study of the Yili River Basin, Xinjiang Province

More Information
  • To further improve the accuracy of landslide hazard prediction models and enhance their interpretability, this study selected 8 influencing factors of landslide occurrence, taking the Yili River Basin, Xinjiang province as an example. An interpretable BPNN-SHAP model, based on the back propagation neural network (BPNN) model and the game theory with the aim of addressing the 'black box' issue, was constructed. Firstly, the dataset was divided into 70% training set and 30% test set, and 5-fold cross-validation was used to enhance the robustness of the BPNN-SHAP model. Then, the evaluation accuracy of this model was compared with three other models: Deep Neural Network (DNN), Random Forest (RF), and Logistic Regression (LR). Finally, regional landslide hazard assessment was completed, and the interpretability of BPNN-SHAP was also discussed. The results showed that the BPNN-SHAP model achieved the highest statistical values in the following metrics: Accuracy (A)=0.904, Precision (P)=0.911, Recall (R)=0.919, F1Score=0.915, and SAUC=0.905. The very high and high danger areas for landslides in the study region accounted for 11.96% and 15.53%, respectively. Among these regions, Xinyuan and Nileke County occupy the highest proportions, at approximately 51.1% and 45.6%, respectively. The primary controlling factors for landslides were elevation, slope, rainfall, and peak ground acceleration (PGA). Specifically, areas with an elevation of 1500 m to 2000 m, slopes greater than 14°, annual rainfall between 260 mm and 310 mm, and PGA greater than 0.23 g are prone to landslides, indicating that the predominant types of landslides are rainfall-induced and earthquake-induced. Our research method is expected to provide a new technical reference for landslide hazard assessment and theoretical support for disaster prevention, mitigation, and resilience construction in the Yili River Basin.

  • 加载中
  • [1] 艾力哈木·艾克拉木,2022. 伊犁河流域平原区地下水水质特征及其形成机理研究[D]. 新疆:新疆农业大学.

    Google Scholar

    Ailhamu A,2022. Characteristics of groundwater quality and its formation mechanism in the plain area of Yili River Basin [D]. Xinjiang:Xinjiang Agricultural University (in Chinese with English abstract).

    Google Scholar

    [2] 陈绪钰,李明辉,王德伟,等,2019. 基于GIS和信息量法的四川峨眉山市地质灾害易发性定量评价[J]. 沉积与特提斯地质, 39(4):100 − 112.

    Google Scholar

    Chen X Y,Li M H,Wang D W,et al.,2019. Quantitative evaluation of geological hazard vulnerability in Emeishan City,Sichuan Province based on GIS and information method[J]. Sedimentary Geology and Tethyan Geology, 39(4):100 − 112 (in Chinese with English abstract).

    Google Scholar

    [3] Collini E,et al.,2022. Predicting and understanding landslide events with explainable AI[J]. IEEE Access,10:31175 − 31189. doi: 10.1109/ACCESS.2022.3158328

    CrossRef Google Scholar

    [4] Dai F C,Lee C F,2002. Landslide characteristics and slope instability modeling using GIS,Lantau Island,Hong Kong[J]. Geomorphology,42(3-4):213 − 228. doi: 10.1016/S0169-555X(01)00087-3

    CrossRef Google Scholar

    [5] 范贺娟,2023. 天山野果林区大小莫合流域山体滑坡灾害生态风险评价[D]. 新疆:新疆师范大学.

    Google Scholar

    Fan H J,2023. Ecological risk assessment of landslide disaster in the Big and small Mohe river area of wild fruit forest in Tianshan Mountains [D]. Xinjiang:Xinjiang Normal University (in Chinese with English abstract).

    Google Scholar

    [6] 傅贵,2021. 伊犁某典型黄土区滑坡易发性评价研究[D]. 安徽:安徽理工大学.

    Google Scholar

    Fu G,2021. Evaluation of landslide susceptibility in a typical loess area of Yili [D]. Anhui:Anhui University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [7] 弓小平,王正刚,马宏兵,等,2018. 新疆伊犁谷地地质灾害成因及评价研究[M]. 北京:地质出版社.

    Google Scholar

    Gong X P,Wang Z G,Ma H B,et al.,2018. Study on causes and evaluation of geological hazards in Yili Valley,Xinjiang [M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [8] 胡杨,张紫昭,林世河,2023. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价[J]. 工程地质学报,31(4):1350 − 1363.

    Google Scholar

    Hu Y,Zhang Z Z,Lin S H,2023. Evaluation of landslide susceptibility in the Yili Valley region of Xinjiang based on the coupling of right-of-evidence and logistic regression[J]. Journal of Engineering Geology,31(4):1350 − 1363 (in Chinese with English abstract).

    Google Scholar

    [9] Jibson R W,2011. Methods for assessing the stability of slopes during earthquakes—A retrospective[J]. Engineering Geology,122(1-2):43 − 50. doi: 10.1016/j.enggeo.2010.09.017

    CrossRef Google Scholar

    [10] 李浩,2024. 基于多模融合和数据异常检测的滑坡预测和预警[D]. 江苏:中国矿业大学.

    Google Scholar

    Li H,2024. Landslide prediction and early warning based on multimode fusion and data anomaly detection [D]. Jiangsu:China University of Mining and Technology (in Chinese with English abstract).

    Google Scholar

    [11] 李俊峰,张小琼,马滔,等,2023. 基于XGBoost和SHAP的可解释性滑坡位移预测模型[J/OL]. 工程地质学报:1 − 16.

    Google Scholar

    Li J F,Zhang S Q,Ma T,et al.,2023. Interpretable landslide displacement prediction model based on XGBoost and SHAP[J/OL]. Journal of Engineering Geology:1 − 16 (in Chinese with English abstract).

    Google Scholar

    [12] 李帅,陈建波,姚远,等,2021. 基于GIS的地震滑坡危险性分析研究——以伊犁地区为例[J]. 内陆地震, 35(1):38 − 47.

    Google Scholar

    Li S,Chen J B,Yao Y,et al.,2021. Research on GIS-based seismic landslide hazard analysis-Taking Yili area as an example[J]. Inland Earthquake, 35(1):38 − 47 (in Chinese with English abstract).

    Google Scholar

    [13] 李扬,2023. 基于随机森林模型解释的越野路面识别算法研究[D]. 吉林:吉林大学.

    Google Scholar

    Li Y,2023. Research on off-road pavement recognition algorithm based on random forest model interpretation[D]. Jilin:Jilin University (in Chinese with English abstract).

    Google Scholar

    [14] Lian L,Yu M Z,Xiu J L,2023. RMDGCN:Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism[J]. Plos Computational Biology,19(12):e1011677 − e1011677. doi: 10.1371/journal.pcbi.1011677

    CrossRef Google Scholar

    [15] 梁世川,乔华,吕东,等,2023. 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理,46(6):880 − 888.

    Google Scholar

    Liang S C,Qiao H,Lu D,et al.,2023. Distribution characteristics of geologic hazards in the Yili Valley and analysis of the main controlling factors[J]. Arid Zone Geography,46(6):880 − 888 (in Chinese with English abstract).

    Google Scholar

    [16] 刘冰,2012. 公布遇难者名单是对生命的尊重[N]. 新疆:新疆日报(汉).

    Google Scholar

    Liu B,2012. Publishing the List of Victims is a Respect for Life[N]. Xinjiang:Xinjiang Daily(Chinese) (in Chinese with English abstract).

    Google Scholar

    [17] 刘任鸿,李明辉,邓英尔,等,2021. 基于GIS的华蓥市地质灾害易发性评价[J]. 沉积与特提斯地质, 41(1):129 − 136.

    Google Scholar

    Liu R H,Li M H,Deng Y R,et al.,2021. GIS-based assessment of geological hazard susceptibility in Huaying City[J]. Sedimentary Geology and Tethyan Geology, 41(1):129 − 136 (in Chinese with English abstract).

    Google Scholar

    [18] Lundberg S M,Erion G,Chen H,et al.,2020. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence,2(1):56 − 67. doi: 10.1038/s42256-019-0138-9

    CrossRef Google Scholar

    [19] Mitchell R,Frank E,Holmes G,2022. GPUTreeShap:Massively parallel exact calculation of SHAP scores for tree ensembles[J]. PeerJ Computer Science,8:e880.

    Google Scholar

    [20] Molnar C,2020. Interpretable machine learning [M]. Raleigh:Independently Published.

    Google Scholar

    [21] Ribeiro M,Singh S,Guestrin C,2016. Why should I trust you? Explaining the predictions of any classifier [C]. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Demonstrations,97 − 101.

    Google Scholar

    [22] 孙星,2023. 断层影响下中深孔采场围岩不连续变形特征及稳定性评价[J]. 中国矿业,32(6):113 − 122. doi: 10.12075/j.issn.1004-4051.20230278

    CrossRef Google Scholar

    Sun X,2023. Characteristics of discontinuous deformation and stability evaluation of the peripheral rock of medium-deep hole quarry under the influence of fault[J]. China Mining Industry,32(6):113 − 122 (in Chinese with English abstract). doi: 10.12075/j.issn.1004-4051.20230278

    CrossRef Google Scholar

    [23] Tao K,Wang L,Qian X,2016. Multi-factor constrained analysis method for geological hazard risk[J]. International Journal of Engineering and Technology,8(3):198. doi: 10.7763/IJET.2016.V8.884

    CrossRef Google Scholar

    [24] 陶妍,角媛梅,丁银平,等,2023. 降雨诱发型滑坡的降雨阈值及机理研究进展与展望[J]. 云南师范大学学报:自然科学版,43(4):71 − 78.

    Google Scholar

    Tao Y,Jiao Y M,Ding Y P,et al.,2023. Progress and prospects of rainfall threshold and mechanism of rainfall-induced landslides[J]. Journal of Yunnan Normal University (Natural Science Edition),43(4):71 − 78 (in Chinese with English abstract).

    Google Scholar

    [25] 铁永波,葛华,高延超,等,2022. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,42(4):653 − 665.

    Google Scholar

    Tie Y B,Ge H,Gao Y C,et al.,2022. The research progress and prospect of geological hazards in Southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology,42(4):653 − 665 (in Chinese with English abstract).

    Google Scholar

    [26] Tien B D,Tuan T A,Klempe H,et al.,2016. Spatial prediction models for shallow landslide hazards:A comparative assessment of the efficacy of support vector machines,artificial neural networks,kernel logistic regression,and logistic model tree[J]. Landslides,13:361 − 378. doi: 10.1007/s10346-015-0557-6

    CrossRef Google Scholar

    [27] 王存智,张炜,李晨冬,等,2022. 基于GIS和层次分析法的沙溪流域滑坡地质灾害易发性评价[J]. 中国地质调查,9(5):51 − 60.

    Google Scholar

    Wang C Z,Zhang W,Li C D,et al.,2022. Evaluation of landslide geohazard susceptibility in Shaxi watershed based on GIS and hierarchical analysis[J]. Chinese Geological Survey,9(5):51 − 60 (in Chinese with English abstract).

    Google Scholar

    [28] 王家柱,高延超,铁永波,等,2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例[J]. 沉积与特提斯地质,43(3):640 − 650.

    Google Scholar

    Wang J Z,Gao Y C,Tie Y B,et al.,2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns:A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology,43(3):640 − 650 (in Chinese with English abstract).

    Google Scholar

    [29] 王鑫盈,马超,吕立群,等,2024. 黄土高原不同土地利用类型区浅层滑坡侵蚀特征分析——以蔡家川滑坡事件为例[J/OL]. 干旱区研究:1 − 10.

    Google Scholar

    Wang X Y,Ma C,Lü L Q,et al.,2024. Characterization of shallow landslide erosion in different land-use types of the Loess Plateau--A case study of the Caijiachuan landslide[J/OL]. Arid Zone Research:1 − 10 (in Chinese with English abstract).

    Google Scholar

    [30] 王颖慧,丁建丽,李晓航,等,2022. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报,42(8):3106 − 3118.

    Google Scholar

    Wang Y H,Ding J L,Li X H,et al.,2022. Impacts of land use/cover change on ecosystem service values in the Yili River Basin - based on an intensity analysis model[J]. Journal of Ecology,42(8):3106 − 3118 (in Chinese with English abstract).

    Google Scholar

    [31] 王娅美,张紫昭,张艳阳,等,2023. 基于多种组合模型的新疆巩留县滑坡危险性评价研究[J]. 工程地质学报,31(4):1375 − 1393.

    Google Scholar

    Wang Y M,Zhang Z Z,Zhang Y Y,et al.,2023. Study on landslide hazard evaluation in Gongliu County,Xinjiang based on multiple combination models[J]. Journal of Engineering Geology,31(4):1375 − 1393 (in Chinese with English abstract).

    Google Scholar

    [32] 肖婷,2021. 三峡库区万州区及重点库岸段滑坡灾害风险评价[D]. 武汉:中国地质大学(武汉).

    Google Scholar

    Xiao T,2021. Landslide Disaster Risk Assessment of Wanzhou District and Key Bank Sections in Three Gorges Reservoir Area[D]. Wuhan:China University of Geosciences(Wuhan) (in Chinese with English abstract).

    Google Scholar

    [33] 杨杏丽,2021. 分类学习算法的性能度量指标综述[J]. 计算机科学,48(8):209 − 219. doi: 10.11896/jsjkx.200900216

    CrossRef Google Scholar

    Yang X L,2021. A review of performance metrics for classification learning algorithms[J]. Computer Science,48(8):209 − 219 (in Chinese with English abstract). doi: 10.11896/jsjkx.200900216

    CrossRef Google Scholar

    [34] 曾韬睿,王林峰,张俞,等,2024. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性[J]. 中国地质灾害与防治学报,35(1):37 − 50.

    Google Scholar

    Zeng T R,Wang L F,Zhang Y,et al.,2024. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. China Journal of Geological Hazards and Prevention,35(1):37 − 50 (in Chinese with English abstract).

    Google Scholar

    [35] 张迎宾,徐佩依,林剑锋,等,2024. 基于BP神经网络的九寨沟地区地震滑坡危险性预测研究[J]. 工程地质学报,32(1):133 − 145.

    Google Scholar

    Zhang Y B,Xu P Y,Lin J F,et al.,2024. Seismic landslide hazard prediction in Jiuzhaigou area based on BP neural network[J]. Journal of Engineering Geology,32(1):133 − 145 (in Chinese with English abstract).

    Google Scholar

    [36] 周昌,黄顺,2023. 新疆伊犁黄土工程地质特征及致灾机理研究综述[J]. 工程地质学报,31(4):1247 − 1260.

    Google Scholar

    Zhou C,Huang S,2023. A review of engineering geological characteristics and disaster mechanism of loess in Yili,Xinjiang[J]. Journal of Engineering Geology,31(4):1247 − 1260 (in Chinese with English abstract).

    Google Scholar

    [37] 周超,甘露露,王悦,等,2023. 综合非滑坡样本选取指数与异质集成机器学习的区域滑坡易发性建模[J]. 地球信息科学学报, 25(8):1570 − 1585.

    Google Scholar

    Zhou C,Gan L L,Wang Y,et al.,2023. Regional landslide susceptibility modeling based on non-landslide sample selection index and heterogeneous integrated machine learning[J]. Journal of Geoinformation Science, 25(8):1570 − 1585 (in Chinese with English abstract).

    Google Scholar

    [38] 周新植,2023. 滑坡易发性机器学习优化模型及可解释性研究[D]. 重庆:重庆大学.

    Google Scholar

    Zhou X Z,2023. Landslide susceptibility machine learning optimization model and interpretability study[D]. Chongqing:Chongqing University (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(381) PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint