2024 Vol. 44, No. 3
Article Contents

XIONG Xiaohui, BAI Yongjian, TIE Yongbo, GAO Yanchao, XU Wei, GONG Lingfeng, WANG Jiazhu, TIAN Kai, LI Pengyue. 2024. Identification of potential geohazards in mountainous towns based on 'Space-Air-Ground-Underground' approach: A case study of key towns in Xide County, Sichuan Province. Sedimentary Geology and Tethyan Geology, 44(3): 560-571. doi: 10.19826/j.cnki.1009-3850.2024.09001
Citation: XIONG Xiaohui, BAI Yongjian, TIE Yongbo, GAO Yanchao, XU Wei, GONG Lingfeng, WANG Jiazhu, TIAN Kai, LI Pengyue. 2024. Identification of potential geohazards in mountainous towns based on "Space-Air-Ground-Underground" approach: A case study of key towns in Xide County, Sichuan Province. Sedimentary Geology and Tethyan Geology, 44(3): 560-571. doi: 10.19826/j.cnki.1009-3850.2024.09001

Identification of potential geohazards in mountainous towns based on "Space-Air-Ground-Underground" approach: A case study of key towns in Xide County, Sichuan Province

  • In order to better meet the needs of geohazard identification in mountainous towns and effectively detect small-sized, medium-sized, and hidden geohazards, a case study was conducted in several typical towns in Xide County, southwest Sichuan. The study employed a comprehensive suite of techniques, including optical remote sensing, InSAR, LiDAR, detailed slope investigation, and high-density resistivity methods, to identify geohazards from various perspectives and levels of precision. The results show that these methods complement each other well and are effective in geohazard identification. A total of 80 occurrences of geohazards were identified, including 29 new identifications, along with 131 potential geohazard dangers. The differences in disaster-inducing factors in the study area constrain the effectiveness of different methods. Optical remote sensing proved more effective in areas characterized by strong structural deformation and hard rock formations. In contrast, unmanned aerial vehicle (UAV) photogrammetry, combined with detailed ground surveys and geophysical exploration, was more suitable for identifying geohazards in the red layer distribution areas of the Mishi wide gentle syncline. Airborne LiDAR high-definition 3D photography was particularly effective for identifying "dustpan-shaped" landslides and "oak leaf-shaped" debris flows, which are common on the slopes of key towns. The combination of easily collapsible and slidable engineering geological rock groups and dip-slope structures is the key to the formation of geohazards in the study area. Geophysical exploration targeting disaster-controlling structures is an important support for geohazard identification.

  • 加载中
  • [1] 党杰,董吉,何松标,等,2022. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用[J]. 中国地质灾害与防治学报,33(4):106 − 113.

    Google Scholar

    Dang J,Dong J,He S B,et al.,2022. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng,Guizhou[J]. The Chinese Journal of Geological Hazard and Control,33(4):106 − 113 (in Chinese with English abstract).

    Google Scholar

    [2] Francesca B,Ivan C,Paolo M,et al.,2011. Displacement patterns of a landslide affected by human activities:Insights from ground-based InSAR monitoring[J]. Natural Hazards,59:1377 − 1396. doi: 10.1007/s11069-011-9840-6

    CrossRef Google Scholar

    [3] 葛大庆,戴可人,郭兆成,等,2019. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报:信息科学版,44(7):949 − 956.

    Google Scholar

    Ge D Q,Dai K R,Guo Z C,et al.,2019. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,44(7):949 − 956 (in Chinese with English abstract).

    Google Scholar

    [4] 黄海峰,薛蓉花,赵蓓蓓,等,2022. 孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别[J]. 测绘学报,51(10):2056 − 2068.

    Google Scholar

    Huang H F,Xue R H,Zhao B B,et al.,2022. The bedding rock landslide identification in the head area of the Three Gorges Reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method[J]. Acta Geodaetica et Cartographica Sinica,51(10):2056 − 2068 (in Chinese with English abstract).

    Google Scholar

    [5] 贾虎军,王立娟,范冬丽,2021. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报,32(2):60 − 65.

    Google Scholar

    Jia H J,Wang L J,Fan D L,2021. The application of UAV LiDAR and tilt photography in the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,32(2):60 − 65 (in Chinese with English abstract).

    Google Scholar

    [6] 蒋全科,雷宛,刘俊骐,2023. 利用高密度电法勘探盐边县格萨拉巨型滑坡堆积体[J]. 科学技术与工程,23(5):1853 − 1866.

    Google Scholar

    Jiang Q K,Lei W,Liu J Q,2023. Exploration of Gesala giant landslide accumulation in Yanbian County by high-density electrical method[J]. Science Technology and Engineering,23(5):1853 − 1866 (in Chinese with English abstract).

    Google Scholar

    [7] 刘星洪,姚鑫,於开炳,等,2020. 川藏高速巴塘−芒康段地质灾害遥感综合早期识别研究[J]. 四川大学学报(工程科学版),52(6):49 − 60.

    Google Scholar

    Liu X H,Yao X,Yu K B,et al.,2020. Remote sensing integrated identification of geological hazards in the Batang- Mangkang section of the Sichuan-Tibet highway[J]. Advanced Engineering Sciences,52(6):49 − 60 (in Chinese with English abstract).

    Google Scholar

    [8] Nicola C,William F,Stefano M,et al.,2017. Spaceborne,UAV and ground-based remote sensing techniques for landslide mapping,monitoring and early warning[J]. Geoenvironmental Disasters,4(1):1 − 23. doi: 10.1186/s40677-016-0065-6

    CrossRef Google Scholar

    [9] Scaioni M,Longoni L,Melillo V,et al.,2014. Remote Sensing for Landslide Investigations:An Overview of Recent Achievements and Perspectives[J]. Remote Sensing,6(12):9600 − 9652.

    Google Scholar

    [10] 覃建雄,夏竹,张长俊,等,2001. 西昌复合盆地层序充填序列与沉积动力演化初探[J]. 古地理学报, 3(4):45 − 55.

    Google Scholar

    Qin J X,Xia Z,Zhang C J,et al.,2001. Sequence filling succession and sedimentary dynamic evolution of the Xichang Compound Basin[J]. Journal of Palaeogeography, 3(4):45 − 55 (in Chinese with English abstract).

    Google Scholar

    [11] 谭德军,尹晨沣,2020. 高植被覆盖复杂山区机载激光LiDAR点云分类与处理[J]. 地球科学前沿,10(7):616 − 621. doi: 10.12677/AG.2020.107060

    CrossRef Google Scholar

    Tan D J,Yin C P,2020. Classification and processing of airborne laser LiDAR point clouds in complex mountainous areas with high vegetation cover[J]. Advances in Geosciences,10(7):616 − 621 (in Chinese with English abstract). doi: 10.12677/AG.2020.107060

    CrossRef Google Scholar

    [12] 王家柱,高延超,铁永波,等,2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例[J]. 沉积与特提斯地质, 43(3):640 − 650.

    Google Scholar

    Wang J Z,Gao Y C,Tie Y B,et al.,2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns:A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology, 43(3):640 − 650 (in Chinese with English abstract).

    Google Scholar

    [13] 王运生,李云岗,1996. 西昌盆地的形成与演化[J]. 成都理工学院学报,1996,23(1):85 − 90.

    Google Scholar

    Wang Y S,Li Y G,1996. Formation and evolution of the Xichang Basin[J]. Journal of Chengdu Institute of Technology,23(1):85 − 90 (in Chinese with English abstract).

    Google Scholar

    [14] 吴明堂,房云峰,卓冠晨,等,2023. 白鹤滩库区三家村库岸地质灾害隐患综合遥感识别[J]. 昆明理工大学学报:自然科学版,48(3):53 − 61.

    Google Scholar

    Wu M T,Fang Y F,Zhuo G C,et al.,2023. Comprehensive remote sensing identification of potential geohazards in Sanjiacun reservoir bank of Baihetan[J]. Journal of Kunming University of Science and Technology(Natural Science),48(3):53 − 61 (in Chinese with English abstract).

    Google Scholar

    [15] 许强,董秀军,朱星,等,2023. 基于实景三维的天−空-地−内滑坡协同观测[J]. 工程地质学报, 31(3):706 − 717.

    Google Scholar

    Xu Q,Dong X J,Zhu X,et al.,2023. Landslide collaborative observation technology based on real scene 3D view from Space-Air-Ground-Interior perspective[J]. Journal of Engineering Geology, 31(3):706 − 717 (in Chinese with English abstract).

    Google Scholar

    [16] 许强,郭晨,董秀军,2022. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报,51(10):2020 − 2033.

    Google Scholar

    X Q,Guo C,Dong X J,2022. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica,51(10):2020 − 2033 (in Chinese with English abstract).

    Google Scholar

    [17] 许强,2020. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报:信息科学版,45(11):1651 − 1659.

    Google Scholar

    XU Q,2020. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University,45(11):1651 − 1659 (in Chinese with English abstract).

    Google Scholar

    [18] 卓冠晨,戴可人,周福军,等,2022. 川藏交通廊道典型工点InSAR监测及几何畸变精细判识[J]. 地球科学,47(6):2031 − 2047.

    Google Scholar

    Zhuo G C,Dai K R,Zhou F J,et al.,2022. Monitoring typical construction sites of Sichuan-Tibet traffic corridor by InSAR and intensive distortion analysis [J]. Earth Science, 47(6):2031 − 2047 (in Chinese with English abstract).

    Google Scholar

    [19] 赵超英,刘晓杰,高杨,等,2022. 基于SAR/InSAR技术的雅鲁藏布江下游高位地质灾害早期识别[J]. 地质力学学报, 28(6):981 − 994.

    Google Scholar

    Zhao C Y,Liu X J,Gao Y,et al.,2022. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology[J]. Journal of Geomechanics, 28(6):981 − 994 (in Chinese with English abstract).

    Google Scholar

    [20] 赵聪,铁永波,梁京涛,2023. 基于机载LiDAR技术的泥石流物源侵蚀量定量评价研究[J]. 沉积与特提斯地质,43(4):808 − 816.

    Google Scholar

    Zhao C,Tie Y B,Liang J T,2023. Quantitative evaluation of debris flow provenance erosion based on Airborne Lidar Technology[J]. Sedimentary Geology and Tethyan Geology,43(4):808 − 816 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(364) PDF downloads(182) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint