2024 Vol. 44, No. 3
Article Contents

WENG Yanmei, ZHANG Wei, GAO Liantong. 2024. Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(3): 523-533. doi: 10.19826/j.cnki.1009-3850.2024.07004
Citation: WENG Yanmei, ZHANG Wei, GAO Liantong. 2024. Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(3): 523-533. doi: 10.19826/j.cnki.1009-3850.2024.07004

Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province

More Information
  • China is one of the countries with frequent rainfall-induced landslide geological disasters. Frequent landslide disasters affect economic development and quality of people's life to some degree. To address this issue, this study proposes a method combining the SHALSTAB model and SVM model, which integrates the advantage of the SHALSTAB model in evaluating the stability of rainfall infiltration on slopes with the advantage of the SVM model in processing nonlinear data. In this study, Daguan County in Yunnan Province has been selected as the research focus to further explore the risk assessment of rainfall-induced landslides. The results show that the evaluation accuracy of the model improves from 82.7% for the single-SHALSTAB model to 94.5% for the SHALSTAB-SVM model, and the accuracy improves by 14.268%. This significant improvement highlights the higher accuracy of the fusion model in accurately analyzing the risk prediction of rainfall-induced landslides. Meanwhile, the satellite image interpretation confirms that the prediction results are consistent with actual landslide conditions, verifying the model's better accuracy in practical applications. This study is not only of great significance for the risk assessment of landslide disasters in Daguan County, but also provides a valuable reference for the prediction and assessment of similar areas or other types of geological disasters.

  • 加载中
  • [1] Beven K J,Kirkby M J,1979. A physically based,variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant[J]. Hydrological Sciences Bulletin, 24(1):43 − 69.

    Google Scholar

    [2] Ciurleo M,Mandaglio M C,Moraci N,2019. Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area[J]. Landslides, 16(1):175 − 188.

    Google Scholar

    [3] 陈悦丽,陈德辉,李泽椿,等,2015. 基于Monte Carlo-SHALSTAB模型的滑坡危险性评价——以福建省德化县为例[J]. 灾害学, 30(4):101 − 106.

    Google Scholar

    Chen Y L,Chen D H,Li Z C,et al.,2015. Assessment of landslide hazard based on Monte Carlo-SHALSTAB model[J]. Journal of Catastrophology, 30(4):101 − 106 (in Chinese with English abstract).

    Google Scholar

    [4] 蔡向阳,2020. 山区城镇地质灾害风险评价研究[D]. 北京:中国地质大学(北京).

    Google Scholar

    Cai X Y,2020. Study on the risk evaluation of geologic disasters in mountainous towns[D]. Beijing:China University of Geosciences(Beijing) (in Chinese with English abstract).

    Google Scholar

    [5] 丁茜,赵晓东,吴鑫俊,等,2022. 基于RBF核的多分类SVM滑塌易发性评价模型[J]. 中国安全科学学报, 32(3):194 − 200.

    Google Scholar

    Ding Xi,Zhao X D,Wu X J,et al.,2022. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal, 32(3):194 − 200 (in Chinese with English abstract).

    Google Scholar

    [6] 黄发明,李金凤,王俊宇,等,2022. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报, 41(2):44 − 59.

    Google Scholar

    Huang F M,Li J F,Wang J Y,et al.,2022. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology, 41(2):44 − 59 (in Chinese with English abstract).

    Google Scholar

    [7] 贺攀,2023. GRA-RF在铁路沿线滑坡危险性评价中的应用研究[D]. 兰州交通大学.

    Google Scholar

    He P,2023. Application of GRA-RF in landslide risk assessment along railway[D]. Lanzhou Jiaotong University (in Chinese with English abstract).

    Google Scholar

    [8] 姜亚东,那仁格日勒,周丹丹,2022. 基于层次分析法的呼和浩特市辖区地质灾害易发性评价[J]. 环境与发展, 34(8):38 − 45.

    Google Scholar

    Jiang Y D,Narengerile,Zhou D D,2022. Evaluation of geological disaster susceptibility in Hohhot city area based on hierarchical analysis method[J]. Environment and Development, 34(8):38 − 45 (in Chinese with English abstract).

    Google Scholar

    [9] 季建万,熊义兵,姜琳琳,等,2023. 基于GD-SPCA的京津冀城市群地质灾害易发性评价[J]. 灾害学,38(1):94−99.

    Google Scholar

    Ji J W,Xiong Y B,Jiang L L,et al.,2023. Evaluation of geological disaster susceptibility of jing -jin-ji urban agglomeration based on geodetector and spatial principal component analysis methods[J]. Journal of Catastrophology ,38(1):94−99. (in Chinese with English abstract).

    Google Scholar

    [10] 刘志明,2023. 大关县地质灾害发育特征及风险评估[D]. 昆明理工大学.

    Google Scholar

    Liu Z M,2023. Developmental Characteristics and Risk Assessment of Geological Hazards in Daguan County. [D]. Kunming University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [11] 刘传正,陈春利,2020. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 28(2):375 − 383.

    Google Scholar

    Liu C Z,Chen C L,2020. Achievements andcountermeasures in risk reduction of geological disasters in china[J]. Journal of Engineering Geology, 28(2):375 − 383 (in Chinese with English abstract).

    Google Scholar

    [12] 刘任鸿,李明辉,邓英尔,等,2021. 基于GIS的华蓥市地质灾害易发性评价[J]. 沉积与特提斯地质,41(1):129 − 136.

    Google Scholar

    Liu R H,Li M H,Deng Y E,et al.,2021. GIS assessments of geologic hazards in Huaying City,Sichuan[J]. Sedimentary Geology and Tethyan Geology,41(1):129 − 136 (in Chinese with English abstract).

    Google Scholar

    [13] 中华人民共和国建设部. 中华人民共和国国家标准,1995. 工程岩体分级标准[M]. 中国计划出版社.

    Google Scholar

    Ministry of Construction of the People's Republic of China,1995. National Standard of the People's Republic of China. Engineering rock classification standard[M]. China Planning Press,1995 (in Chinese with English abstract).

    Google Scholar

    [14] 穆柯,谢婉丽,刘琦琦,等,2022. 基于LR-RF模型的滑坡易发性评价——以铜川市耀州区为例[J]. 灾害学, 37(3):212 − 218.

    Google Scholar

    Mu K,Xie W L,Liu Q Q,et al.,2022. Research on landslide susceptibility evaluation based on Logistic Regression and LR coupling model[J]. Journal of Catastrophology, 37(3):212 − 218 (in Chinese with English abstract).

    Google Scholar

    [15] 毛昶熙,2009. 堤防工程手册[M]. 北京:中国水利水电出版社.

    Google Scholar

    Mao C X,2009. Handbook of embankment engineering[M]. Beijing:China Water Resources and Hydropower Press(in Chinese with English abstract).

    Google Scholar

    [16] San Taner B,2014. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping:The Candir catchment area (western Antalya,Turkey)[J]. International Journal of Applied Earth Observation and Geoinformation, 26:399 − 412.

    Google Scholar

    [17] 唐春,2008. 大关县地质灾害风险评价与防治对策研究[D]. 昆明理工大学.

    Google Scholar

    Tang Chun,2008. Research on Risk Evaluation and Prevention Countermeasures of Geological Hazards in Daguan County[D]. Kunming University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [18] Vieira B C,Fernandes NF,Augusto Filho O,et al.,2018. Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models,Serra do Mar,Brazil[J]. Environmental Earth Sciences,77 (6):260.

    Google Scholar

    [19] 王杰,2023. 基于TRIGRS模型的区域滑坡危险性评价——以洛哈镇为例[D]. 西南交通大学.

    Google Scholar

    Wang J,2023. Regional landslide hazard assessment based on trigrs model—taken LuoHa town as an example[D]. Southwest Jiaotong University (in Chinese with English abstract).

    Google Scholar

    [20] Yu C L,Chen J P,2020. Landslide Susceptibility Mapping Using the Slope Unit for Southeastern Helong City,Jilin Province,China:A Comparison of ANN and SVM[J]. Symmetry, 12(6): 1047.

    Google Scholar

    [21] Zeng Y,Zhang Y B,Liu J,et al.,2023a. Rapid Emergency Response Assessment of Earthquake-Induced Landslides Driven by Fusion of InSAR Deformation Data and Newmark Physical Models[J]. Remote Sensing,15 (18):4605.

    Google Scholar

    [22] Zeng Y, Zhang Y B, Liu J, et al., 2023b. Assessment of earthquakeinduced landslide hazard zoning using the physics-environmental coupled Model[J]. Journal of Mountain Science, 20 (9), 2644 –2664.

    Google Scholar

    [23] Zeng Y,Zhang Y B,Zhang Z Y,et al.,2023. Landslide susceptibility evaluation based on coupled x-multilayer perceptron model—a case study of Songtao Autonomous County of Guizhou Province,China[J]. Mountain Research, 41(2):280 − 294(in Chinese with English abstract).

    Google Scholar

    [24] 曾营, 张迎宾, 张钟远, 等, 2023. 基于X-多层感知器耦合模型的滑坡易发性评价——以贵州省松桃自治县为例[J]. 山地学报 41(2), 280 – 294.

    Google Scholar

    Zhu A X,Miao Y,Liu J,et al.,2019. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods[J]. Catena,183 (1):104188.

    Google Scholar

    [25] 张晓博,周萍,张焜,等,2023. 基于GIS和CF-Logistic回归模型地质灾害易发性评价:以青海湟中县为例[J]. 沉积与特提斯地质, 43(4):797 − 807.

    Google Scholar

    Zhang X B,Zhou P,Zhang K,et al.,2023. Evaluation method of geological hazard susceptibility:A case study on GIS and CF-Logistic regression model in Huangzhong,Qinghai[J]. Sedimentary Geology and Tethyan Geology, 43(4):797 − 807 (in Chinese with English abstract).

    Google Scholar

    [26] 张景华,张建龙,欧阳渊,等,2024. 基于形成机理的石漠化敏感性评价:以贵州省黔西县为例[J]. 沉积与特提斯地质, 44(1):162 − 171.

    Google Scholar

    Zhang J H,Zhang J L,Ouyang Y,et al.,2024. Sensitivity evaluation of Karst rock desertification based on its formation mechanism:A case study of Qianxi County in Guizhou Province[J]. Sedimentary Geology and Tethyan Geology, 44(1):162 − 171 (in Chinese with English abstract).

    Google Scholar

    [27] 曾营,张迎宾,张钟远,等,2023. 基于X-多层感知器耦合模型的滑坡易发性评价——以贵州省松桃自治县为例[J]. 山地学报 41(2),280 – 294.

    Google Scholar

    Zhang J H, Zhang J L, Ouyang Y, et al., 2024. Sensitivity evaluation of Karst rock desertification based on its formation mechanism: A case study of Qianxi County in Guizhou Province[J]. Sedimentary Geology and Tethyan Geology, 44(1): 162 − 171.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(275) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint