2024 Vol. 44, No. 1
Article Contents

LU Guimei. 2024. The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent. Sedimentary Geology and Tethyan Geology, 44(1): 205-215. doi: 10.19826/j.cnki.1009-3850.2024.01003
Citation: LU Guimei. 2024. The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent. Sedimentary Geology and Tethyan Geology, 44(1): 205-215. doi: 10.19826/j.cnki.1009-3850.2024.01003

The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent

  • The assembly and breakup of supercontinents is the self-expression of plate tectonics. The assembly stage is accompanied by global-scale subduction and collisional orogeny, while the fragmentation stage produces large-scale mafic magmatic events. The Columbia supercontinent was the first true supercontinent in Earth's history, and its main body coalesced between 2.1~1.8 Ga and finally broke apart at 1.3 Ga. Compared with the other younger supercontinents, the paleogeographic reconstruction model of the Columbia supercontinent still remains quite uncertain, which profoundly influences our understanding of the geodynamic processes and effects of its breakup. In this study, based on the correlation of global Paleo-Mesoproterozoic mafic magmatism events, integrated with the published work and analysis of global igneous rock geochemical data, we proposed that multiple Paleo-Mesoproterozoic mantle plume events resulted in the incomplete breakup of the Columbia supercontinent, which significantly affected the geochemical compositions and topographic height of the continental crust at that time. Highly differentiated continental crust and low topographic height together greatly reduced the flux of nutrients into the ocean by weathering and denudation of continental crust materials, thus limiting the primary productivity of marine organisms, and ultimately stalling the evolution of life during the transition period from the Colombian supercontinent to the Rodinia supercontinent.

  • 加载中
  • [1] Bradley D C, 2008. Passive margins through earth history[J]. Earth-Science Reviews, 91: 1-26. doi: 10.1016/j.earscirev.2008.08.001

    CrossRef Google Scholar

    [2] Bataille C P, Willis A, Yang X, Liu X M, 2017. Continental igneous rock composition: A major control of past global chemical weathering[J]. Science Advances, 3: e1602183. doi: 10.1126/sciadv.1602183

    CrossRef Google Scholar

    [3] Brandl P A, Regelous M, Beier C, et al. , 2013. High mantle temperatures following rifting caused by continental insulation[J]. Nature Geoscience, 6: 391-394. doi: 10.1038/ngeo1758

    CrossRef Google Scholar

    [4] Cawood P A, Strachan R A, Pisarevsky S A, et al. , 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449: 118-126. doi: 10.1016/j.jpgl.2016.05.049

    CrossRef Google Scholar

    [5] Cawood P A, 2020. Earth Matters: A tempo to our planet’s evolution[J]. Geology, 48: 525-526.

    Google Scholar

    [6] Crockford P W, Hayles J A, Bao H, et al. , 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity[J]. Nature, 559: 613-616. doi: 10.1038/s41586-018-0349-y

    CrossRef Google Scholar

    [7] 崔晓庄, 任光明, 孙志明, 等, 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件[J]. 地球科学, 45(8): 1-16

    Google Scholar

    Cui X Z, Ren G M, Sun Z M, et al. , 2020. Multiple Tectonothermal Events Recorded in the Early Precambrian Cuoke Complex in the Southwestern Yangtze Block, South China[J]. Earth Science, 45(8): 1-16.

    Google Scholar

    [8] Cui X Z, Wang J, Sun Z, et al. , 2019. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 169: 308-322. doi: 10.1016/j.jseaes.2018.10.026

    CrossRef Google Scholar

    [9] Condie K C, Pisarevsky S A, Puetz S J, et al. , 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125. doi: 10.1016/j.jpgl.2023.118125

    CrossRef Google Scholar

    [10] de Oliveira A, Rocha de Rezende C, 2019. Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): A Statherian supercontinent-superplume coupling? [J] Episodes, 42: 55 − 67.

    Google Scholar

    [11] Dan W, Li X H, Wang Q, et al. , 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off [J]. Precambrian Research, 254: 59-72. doi: 10.1016/j.precamres.2014.07.024

    CrossRef Google Scholar

    [12] Domeier M, Van der Voo R, Torsvik T H, 2012. Paleomagnetism and Pangea: the road to reconciliation[J]. Tectonophysics, 514: 14-43.

    Google Scholar

    [13] Evans D A D, Mitchell R N, 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 39: 443-446.

    Google Scholar

    [14] Ernst R E, Bleeker W, Söderlund U, et al. , 2013a. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution[J]. Lithos, 174: 1-14. doi: 10.1016/j.lithos.2013.02.017

    CrossRef Google Scholar

    [15] Ernst R E, Pereira E, Hamilton M A, et al. , 2013b. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions[J]. Precambrian Research, 230: 103-118. doi: 10.1016/j.precamres.2013.01.010

    CrossRef Google Scholar

    [16] Ernst R E, Hamilton M A, Söderlund U, et al. , 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 9: 464-469. doi: 10.1038/ngeo2700

    CrossRef Google Scholar

    [17] Fan H P, Zhu W G, Li Z X, 2020. Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5 Ga mafic rocks in the Huili-Dongchuan area[J]. Gondwana Research, 87: 248-262. doi: 10.1016/j.gr.2020.06.019

    CrossRef Google Scholar

    [18] Furlanetto F, Thorkelson D J, Rainbird R H, et al. , 2016. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China[J]. Gondwana Research, 39: 14-40. doi: 10.1016/j.gr.2016.06.007

    CrossRef Google Scholar

    [19] 耿元生, 旷红伟, 杜利林, 等, 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 35(8): 2299-2324 doi: 10.18654/1000-0569/2019.08.02

    CrossRef Google Scholar

    Geng Y S, Kuang H W, Du L L, et al. , 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent[J]. . Acta Petrologica Sinica, 35(8): 2299-2324. doi: 10.18654/1000-0569/2019.08.02

    CrossRef Google Scholar

    [20] Gladkochub D P, Donskaya T V, Pisarevsky S A, et al. , 2022. 1.79-1.75 Ga mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography[J]. Precambrian Research, 370: 106557. doi: 10.1016/j.precamres.2022.106557

    CrossRef Google Scholar

    [21] Gibson G M, Champion D C, Huston D L, et al. , 2020. Orogenesis in Paleo-Mesoproterozoic Eastern Australia: A response to Arc-Continent and Continent-Continent Collision During Assembly of the Nuna Supercontinent[J]. Tectonics, 39: e2019TC005717. doi: 10.1029/2019TC005717

    CrossRef Google Scholar

    [22] Johansson Å, 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighbourhood during the Proterozoic? [J]. Precambrian Research, 175: 221-234. doi: 10.1016/j.precamres.2009.09.011

    CrossRef Google Scholar

    [23] Hao J H, Knoll A H, Huang F, et al. , 2020. Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus[J]. Geochimica et Cosmochimica Acta, 273: 70-84. doi: 10.1016/j.gca.2020.01.027

    CrossRef Google Scholar

    [24] Hartmann J, Moosdorf N, Lauerwald R, et al. , 2014. Global chemical weathering and associated P-release — The role of lithology, temperature and soil properties[J]. Chemical Geology, 363: 145-163. doi: 10.1016/j.chemgeo.2013.10.025

    CrossRef Google Scholar

    [25] Horton F, 2015. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? [J]. Geochemistry, Geophysics, Geosystems, 16: 1723-1738.

    Google Scholar

    [26] 江新胜, 崔晓庄, 卓皆文, 等, 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31-37

    Google Scholar

    Jiang X S, Cui X Z, Zhuo J W, et al. , 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 40(3): 31-37

    Google Scholar

    [27] Keller B, Schoene B, 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history[J]. Earth and Planetary Science Letters, 481: 290-304. doi: 10.1016/j.jpgl.2017.10.031

    CrossRef Google Scholar

    [28] Keppie D F, 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea[J]. Geology, 43: 335-338.

    Google Scholar

    [29] Kirscher U, Mitchell R N, Liu Y B, et al. 2020. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent[J]. Geology, 49(2): 174 − 179.

    Google Scholar

    [30] Kusky T, Li J, Santosh M, 2007. The Paleoproterozoic North Hebei orogen: North China craton's collisional suture with the Columbia supercontinent[J]. Gondwana Research, 12: 4-28. doi: 10.1016/j.gr.2006.11.012

    CrossRef Google Scholar

    [31] Lenardic A, Moresi L, Jellinek A, et al. , 2011. Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments[J]. Geochemistry, Geophysics, Geosystems, 12: Q10016.

    Google Scholar

    [32] 李献华, 2021. 超大陆裂解的主要驱动力—地幔柱或深俯冲? [J]. 地质学报 95(1), 20 − 31.

    Google Scholar

    Li X H, 2021. The major driving force triggering breakup of supercontinent: mantle plumes or deep subduction? [J]. Acta Geologica Sinica, 95(1): 20 − 31(in Chinese with English abstract).

    Google Scholar

    [33] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160: 179-210. doi: 10.1016/j.precamres.2007.04.021

    CrossRef Google Scholar

    [34] Li Z X, Mitchell R N, Spencer C J, et al. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 323: 1 − 5.

    Google Scholar

    [35] Lu G M, Wang W, Cawood P A, et al. , 2020. Late Paleo- to early Mesoproterozoic mafic magmatism in the SW Yangtze Block: Mantle plumes associated with Nuna breakup? [J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB019260. doi: 10.1029/2019JB019260

    CrossRef Google Scholar

    [36] Lu G M, Wang W, Ernst R E, et al. , 2023. Evolutionary stasis during the Mesoproterozoic Columbia-Rodinia supercontinent transition[J]. Precambrian Research, 391: 107057. doi: 10.1016/j.precamres.2023.107057

    CrossRef Google Scholar

    [37] Meert J G, 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent[J]. Gondwana Research, 21: 987-993. doi: 10.1016/j.gr.2011.12.002

    CrossRef Google Scholar

    [38] Murphy J B, Nance R D, 2003. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence[J]. Geology, 31: 873-876.

    Google Scholar

    [39] Murphy J B, Nance R D, 2005. Do supercontinents turn inside-in or inside-out? [J]. International Geology Review, 47: 591-619. doi: 10.2747/0020-6814.47.6.591

    CrossRef Google Scholar

    [40] Mitchell R N, Kilian T M, Evans D A D, 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 482: 208-211. doi: 10.1038/nature10800

    CrossRef Google Scholar

    [41] Nance R D, Murphy J B, Santosh M, 2014. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 25: 4-29. doi: 10.1016/j.gr.2012.12.026

    CrossRef Google Scholar

    [42] Niu Y L, 2020. On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes[J]. Journal of Asian Earth Sciences, 194: 104367. doi: 10.1016/j.jseaes.2020.104367

    CrossRef Google Scholar

    [43] Nordsvan A R, Collins W J, Li Z X, et al. 2018. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna[J]. Geology, 46(3): 251 − 254.

    Google Scholar

    [44] Payne J L, Hand M, Barovich K M, et al. , 2009. Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent[J]. Geological Society of London Special Publications, 323: 319-355. doi: 10.1144/SP323.16

    CrossRef Google Scholar

    [45] Peng P, 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications[J]. Science China Earth Sciences, 58: 649-675. doi: 10.1007/s11430-014-5026-x

    CrossRef Google Scholar

    [46] Pourteau A, Smit M A, Li Z X, et al. 2018. 1.6 Ga crustal thickening along the final Nuna suture[J]. Geology, 46: 959 − 962.

    Google Scholar

    [47] Reis N J, Teixeira W, Hamilton M A, et al. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence[J]. Lithos, 174: 175 − 195.

    Google Scholar

    [48] Roberts N M W, 2013. The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent[J]. Geoscience Frontiers, 4: 681-691. doi: 10.1016/j.gsf.2013.05.004

    CrossRef Google Scholar

    [49] Rogers J J W, Santosh M, 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent[J]. Gondwana Research, 5: 5-22. doi: 10.1016/S1342-937X(05)70883-2

    CrossRef Google Scholar

    [50] Salminen J M, Evans D A D, Trindade R I F, et al. , 2016. Paleogeography of the Congo/Sao Francisco craton at 1.5 Ga: Expanding the core of Nuna supercontinent[J]. Precambrian Research, 286: 195-212. doi: 10.1016/j.precamres.2016.09.011

    CrossRef Google Scholar

    [51] Silveira E M, Söderlund U, Oliveira E P, et al. , 2013. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 174: 144-156. doi: 10.1016/j.lithos.2012.06.004

    CrossRef Google Scholar

    [52] Sizova E, Gerya T, Brown M, et al. , 2010. Lithos subduction styles in the Precambrian : Insight from numerical experiments[J]. Lithos, 116(3-4): 209-229. doi: 10.1016/j.lithos.2009.05.028

    CrossRef Google Scholar

    [53] Stacey J S, Kramers J D, 1975. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 26: 207-221. doi: 10.1016/0012-821X(75)90088-6

    CrossRef Google Scholar

    [54] Tang M, Chu X, Hao J, et al. , 2021. Orogenic quiescence in Earth’s middle age[J]. Science, 371: 728-731. doi: 10.1126/science.abf1876

    CrossRef Google Scholar

    [55] Volante S, Pourteau A, Collins W J, et al. , 2019. Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia[J]. Journal of Metamorphic Geology, 38(6): 593-627.

    Google Scholar

    [56] Wang L J, Yu J H, Griffin W L, et al. , 2012. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 222-223: 368-385. doi: 10.1016/j.precamres.2011.08.001

    CrossRef Google Scholar

    [57] 王生伟, 蒋小芳, 杨波, 等, 2016. 康滇地区元古宙构造运动Ⅰ: 昆阳陆内裂谷、地幔柱及其成矿作用[J]. 地质论评, 62( 6): 1353-1377

    Google Scholar

    Wang S W, Jiang X F, Yang B, et al. , 2016. The Proterozoic tectonic movement in Kangdian area I: Kunyang intracontinental rift, mantle plume and its metallogenesis [J]. Geological Review, 62: 1353-1377.

    Google Scholar

    [58] 王伟, 卢桂梅, 黄思访, 等, 2019. 扬子陆块古-中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报, 38(1): 30-52

    Google Scholar

    Wang W, Lu G M, Huang S F, et al. , 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52.

    Google Scholar

    [59] Wang W, Zhou M F, Zhao X F, et al. , 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309: 33-47. doi: 10.1016/j.sedgeo.2014.05.004

    CrossRef Google Scholar

    [60] Wang W, Cawood P A, Zhou M F, et al. , 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth & Planetary Science Letters, 433: 269-279.

    Google Scholar

    [61] Wang W, Cawood P A, Pandit M K, 2021. India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks[J]. American Journal of Science, 321: 83-117. doi: 10.2475/01.2021.02

    CrossRef Google Scholar

    [62] Wingate M T D, Pisarevsky S A, Gladkochub D P, et al. 2009. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography[J]. Precambrian Research, 170: 256 − 266.

    Google Scholar

    [63] Ye X T, Zhang C L, Santosh M, et al. , 2016. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 275: 18-34. doi: 10.1016/j.precamres.2015.12.017

    CrossRef Google Scholar

    [64] Zhang S H, Li Z X, Evans D A D, et al. , 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 353-354: 145-155. doi: 10.1016/j.jpgl.2012.07.034

    CrossRef Google Scholar

    [65] Zhang S H, Zhao Y, Li X H, et al. , 2017. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton[J]. Earth and Planetary Science Letters, 465: 112-125. doi: 10.1016/j.jpgl.2017.02.034

    CrossRef Google Scholar

    [66] Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth Science Reviews, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9

    CrossRef Google Scholar

    [67] Zhao G C, Sun M, Wilde S A, et al. , 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth Science Reviews, 67: 91-123. doi: 10.1016/j.earscirev.2004.02.003

    CrossRef Google Scholar

    [68] Zheng R, Li J, Xiao W J, et al. , 2022. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang-Alxa Block, northwest China[J]. GSA Bulletin, 135: 1109-1126.

    Google Scholar

    [69] Zhou M F, Zhao X F, Chen W T, et al. , 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 139: 59-82 doi: 10.1016/j.earscirev.2014.08.013

    CrossRef Google Scholar

    [70] Zou Y, Mitchell R N, Chu X, et al. , 2023. Surface evolution during the mid-Proterozoic stalled by mantle warming under Columbia–Rodinia[J]. Earth and Planetary Science Letters, 607: 118055. doi: 10.1016/j.jpgl.2023.118055

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(355) PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint