2024 Vol. 44, No. 1
Article Contents

LIU Caize, CHEN Minhua, LEI Fenghua, HUANG Yong, WANG Xuelian, WANG Jun, DENG Guoshi, ZHANG Yue. 2024. Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002
Citation: LIU Caize, CHEN Minhua, LEI Fenghua, HUANG Yong, WANG Xuelian, WANG Jun, DENG Guoshi, ZHANG Yue. 2024. Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002

Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province

  • A study comparing cadmium (Cd) accumulation in soil and rice in an area of high background heavy metal concentrations in Huize County, Yunnan, showed that, occasionally, the cadmium content in soil exceeds the standard, whereas the cadmium content in crops remains within the standard. However, our understanding of the reasons for this phenomenon is limited. It is of great significance for soil environmental quality evaluation and ecological restoration to study cadmium accumulation in crops and its control factors in these areas. In this study, 41 rice seed samples and 41 corresponding soil samples were collected from the Nagubazi, Nagu Town, Huize County, Yunnan Province, and their cadmium content was determined by ICP-MS. The correlation between rice cadmium and soil elements (indices) was analyzed by partial correlation, R-type clustering, and stepwise linear regression. The results showed that the soil cadmium content ranged from 0.467 to 1.87 mg/kg, with an average of 0.78 mg/kg, which is 5.69 times that of the national soil background value. Moreover, 58.5% of the soil samples exceeded the soil pollution risk threshold for agricultural land. In contrast, the cadmium content of rice (brown rice) ranged from 0.007 to 0.062 mg/kg, with an average of 0.016 mg/kg, which is lower than the national threshold for food safety.The content of cadmium in rice was significantly positively correlated with the content of U and Mo , and significantly negatively correlated with soil organic carbon (TOC) and the content of S in soil, but not significantly correlated with soil cadmium content and pH value. The phenomenon that soil cadmium exceeds the standard but rice cadmium does not exceed the standard may be related to the enrichment of organic matter in the soil. The content of soil TOC is 5.57 times that of the national background value. When TOC is greater than 3%, cadmium content in rice decreases rapidly. Therefore, the organic matter correction method for soil cadmium environmental grade evaluation was proposed, and the 3.42 km2 (5129 Mu) of paddy field originally classified as Class Ⅱ in the study area was revised to Class Ⅰ. In addition, some suggestions on soil protection and remediation were put forward.

  • 加载中
  • [1] Alloway B J, 2013. Bioavailability of elements in soil [C] // Selinus O, Essentials of Medical Geology (2nd ed. ), Springer, Dordrecht, Netherlands, 351 − 373.

    Google Scholar

    [2] Eriksson, J E, 1988. The effects of clay, organic matter and time on adsorption and plant uptake of cadmium added to the soil[J]. Water, Air and Soil Pollution, 40 : 359-373. . doi: 10.1007/BF00163740

    CrossRef Google Scholar

    [3] Fergusson J E, 1990. The Heavy Elements: Chemistry, Environmental Impact and Health Effects [M]. Oxford, UK.

    Google Scholar

    [4] Gu Q, Yang Z, Yu T, et al. , 2018. From soil to rice – a typical study of transfer and bioaccumulation of heavy metals in China[J]. Acta Agriculturae Scandinavica, 68 (7) : 631-642.

    Google Scholar

    [5] 和淑娟, 李丽娜, 杨牧青, 等, 2020. 云南某冰川侵蚀区域土壤高背景值成因及农作物重金属累积规律探究[J]. 环境科学导刊, 40 (2): 68-74

    Google Scholar

    He S J, Li L N, Yang M Q, et al. , 2020. Research on the causes of high soil background value and the accumulation of heavy metals in crops in a glacier eroded area in Yunnan[J]. Environmental Science Survey, 40 (2): 68-74 .

    Google Scholar

    [6] Johnson A H M, Lalor G C, Preston J, et al. , 1996. Heavy metals in Jamaican surface soils[J]. Environmental Geochemistry and Health, 18 (3) : 113-121. doi: 10.1007/BF01771287

    CrossRef Google Scholar

    [7] Kabata-pendias A, Pendias H, 1984. Trace Elements in Soils and Plants [M]. CRC Press, Boca Raton, Florida, USA.

    Google Scholar

    [8] 李汇文, 王世杰, 白晓永, 等, 2019. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 49 (6) : 986 − 1003.

    Google Scholar

    Li H W, Wang S J, Bai X Y, et al., 2019. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China-Earth Sciences, 62 : 974 − 991(in Chinese with English abstract).

    Google Scholar

    [9] 李佳桐, 李雪, 葛成军, 等, 2018. 琼北土壤重金属高背景值区人群健康风险评价[J]. 热带作物学报, 39 (1): 189-196

    Google Scholar

    Li J T, Li X, Ge C J, et al. , 2018. Health risk assessment of heavy metal in soils in the north of Hainan province with high background value[J]. Chinese Journal of Tropical Crops, 39 (1): 189-196 .

    Google Scholar

    [10] 李杰, 战明国, 钟晓宇, 等, 2021. 广西典型岩溶地区重金属在土壤⁃农作物系统中累积特征及其影响因素[J]. 环境科学学报, 41 (2): 597-606

    Google Scholar

    Li J, Zhan M G, Zhong X Y, et al. , 2021. Distribution and accumulation of heavy metals in soil⁃crop systems from a typical carbonate rocks area in Guangxi[J]. Acta Scientiae Circumstantiae, 41 (2): 597-606 .

    Google Scholar

    [11] 李兴振, 许效松, 潘桂棠, 1995. 泛华夏大陆群与东特提斯构造域演化[J]. 岩相古地理, 15 (4): 1-13

    Google Scholar

    Li X Z, Xu X S, Pan G T, 1995. Evolution of the Pan-Cathaysian Landmass group and eastern Tethyan tectonic domain[J]. Lithofacies Paleogeography, 15 (4): 1-13 .

    Google Scholar

    [12] 廖启林, 刘聪, 王轶, 等, 2015. 水稻吸收Cd的地球化学控制因素研究--以苏锡常典型区为例[J]. 中国地质, 42 (5): 1621 − 1632

    Google Scholar

    Liao Q L, Liu C, Wang Y, et a1., Geochemical characteristics of rice uptake of cadmium and its main controlling factors: A case study of the Suxichang (Suzhou-Wuxi-Changzhou) typical area[J]. Geology in China, 2015, 42 (5): 1621 − 1632(in Chinese with English abstract).

    Google Scholar

    [13] 刘才泽, 王永华, 赵禁, 等, 2022. 川东北地区水稻镉积累与生态健康风险评价[J]. 中国地质, 49 (3): 695-705 doi: 10.12029/gc20220302

    CrossRef Google Scholar

    Liu C Z, Wang Y H, Zhao J, et al. , 2022. Assessment of cadmium accumulation in rice and risk on human health in the northeast SichuanProvince[J]. Geology in China, 49 (3): 695-705 . doi: 10.12029/gc20220302

    CrossRef Google Scholar

    [14] 刘鸿雁, 蒋子涵, 戴景钰, 等, 2019. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学: 地球科学, 49 (12) : 1974 − 1981.

    Google Scholar

    Liu H Y, Jiang Z H, Dai J Y, et al., 2019. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Science China-Earth Sciences, 62 : 1756 − 1763(in Chinese with English abstract).

    Google Scholar

    [15] 刘巍, 陈效民, 景峰, 等, 2019. 生物质炭对土壤-水稻系统中Cd迁移累积的影响[J]. 水土保持学报, 33 (1): 323-327

    Google Scholar

    Liu W, Chen X M, Jing F, et al. , 2019. Effects of biochar amendment on translocation and accumulation of Cd in soil-rice system[J]. Journal of Soil and Water Conservation, 33 (1): 323-327 .

    Google Scholar

    [16] 骆永明, 滕应, 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33 (2): 145-152

    Google Scholar

    Luo Y M, Teng Y, 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 33 (2): 145-152 .

    Google Scholar

    [17] 马宏宏, 彭敏, 郭飞, 等, 2021. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 42 (3): 1514-1522

    Google Scholar

    Ma H H, Peng M, Ge F, et al. , 2021. Factors affecting the translocation and accumulation of cadmium in a soil-crop system in a typical karst area of Guangxi province, China[J]. Environmental Science, 42 (3): 1514-1522 .

    Google Scholar

    [18] 唐豆豆, 袁旭音, 汪宜敏, 等, 2018. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 37 (1): 18-26

    Google Scholar

    Tang D D, Yuan X Y, Wang Y M, et al. , 2018. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 37 (1): 18-26 .

    Google Scholar

    [19] 唐瑞玲, 王惠艳, 吕许朋, 等, 2020. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 34 (5): 917 − 927

    Google Scholar

    Tang R L, Wang H Y, Lü X P, et al., Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China[J]. Geoscience, 2020, 34 (5): 917 − 927(in Chinese with English abstract).

    Google Scholar

    [20] 田发祥, 纪雄辉, 郭勇军, 等, 2015. 有机水溶肥在镉污染稻田中的应用效果研究[J]. 湖南农业科学, (8): 53-56

    Google Scholar

    Tian F X, Ji X H, Guo Y J, et al. , 2015. Application efects of organic water soluble fertilizer in cadmium-polluted paddy fields[J]. Hunan Agricultural Sciences, (8): 53-56 .

    Google Scholar

    [21] 王学求, 周建, 徐善法, 等, 2016. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 43 (5): 1469-1480

    Google Scholar

    Wang X Q, Zhou J, Xu S F, et al. , 2016. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 43 (5): 1469-1480 .

    Google Scholar

    [22] 王永华, 周雪梅, 谢岿锐, 等, 2019. 中国西南地区地球化学图集[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    Wang Y H, Zhou X M, Xie K R, 2019. Geochemical atlas of South China[M]. Wuhan : China University of Geosciences Press (in Chinese)(in Chinese with English abstract).

    Google Scholar

    [23] Wen Y B, Li W, Yang Z F, et al. , 2020. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China[J]. Environmental Polluttion, 258 : 113645. doi: 10.1016/j.envpol.2019.113645

    CrossRef Google Scholar

    [24] 温琰茂, 曾水泉, 潘树荣, 等, 1994. 中国东部石灰岩土壤元素含量分异规律研究[J]. 地理科学, 14 (1): 16-21

    Google Scholar

    Wen Y M, Zeng S Q, Pan S R, et al. , 1994. Distributive tendency 0f elem ent c0ncentrations in soils derived from limestone in eastern china[J]. Sclentia Geographica Sinica, 14 (1): 16-21 .

    Google Scholar

    [25] 吴见珣, 杨赵, 杨涛明, 等, 2020. 云南某典型喀斯特区域农田土壤镉、砷污染特征及来源[J]. 环境科学导刊, 40 (3): 28-33

    Google Scholar

    Wu J X, Yang Z, Yang T M, et al. , 2020. Pollution characteristics and source analysis of cadmium and arsenic in farmland soils of a typical karst region in Yunnan[J]. Environmental Science Survey, 40 (3): 28-33 .

    Google Scholar

    [26] 夏学齐, 季峻峰, 杨忠芳, 等, 2022. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 29 (4): 438-447

    Google Scholar

    Xia X Q, Ji J F, Yang Z F, et al. , 2022. Parent rock type control on cadmium background in soil and sediment: an example from Guizhou province[J]. Earth Science Frontiers, 29 (4): 438-447 .

    Google Scholar

    [27] 熊婕, 朱奇宏, 黄道友, 等, 2019. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 38 (01) : 28 − 34.

    Google Scholar

    Xiong J, Zhu Q H, Huang D Y, et al., 2019. Prediction model for the accumulation of cadmium in rice in typical paddy fields of south China[J]. Journal of Agro-Environment Science, 2019, 38 (1) : 22 − 28 (in Chinese with English abstract).

    Google Scholar

    [28] 徐克全, 金立新, 张华, 等, 2021. 高硒、高镉地质背景下水稻种植实验研究[J]. 沉积与特提斯地质, 41 (4): 649-656

    Google Scholar

    Xu K Q, Jin L X, Zhang H, et al. , 2021. Rice planting experiment under Se-rich and Cd-high geological background[J]. Sedimentary Geology and Tethyan Geology, 41 (4): 649-656 .

    Google Scholar

    [29] 杨琼, 杨忠芳, 张起钻, 等, 2021. 中国广西岩溶地质高背景区土壤-水稻系统 Cd 等重金属生态风险评价[J]. 51 (8) : 1317 − 1331.

    Google Scholar

    Yang Q, Yang Z F, Zhang Q Z, et al., 2021. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China[J]. Science China Earth Sciences, 64 (7) : 1126 − 1139(in Chinese with English abstract).

    Google Scholar

    [30] Yang Q, Yang Z F, Filippelli G M, et al. , 2021. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 567: 120081 doi: 10.1016/j.chemgeo.2021.120081

    CrossRef Google Scholar

    [31] 易甜, 彭立军, 崔文文, 等, 2020. 湖北省地质高背景地区水稻-镉的耕地安全生产阈值研究[J]. 湖北农业科学, 59 (24): 164-168

    Google Scholar

    Yi T, Peng L J, Cui W W, et al. , 2020. Study on rice-Cadmium of safety production threshold of cultivated land in high geological background area of Hubei province[J]. Hubei Agricultural Sciences, 59 (24): 164-168 .

    Google Scholar

    [32] 尹福光, 孙洁, 任飞, 等, 2016. 中国西南区域地质[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    Yin F G, Sun J, Ren F, et al., 2016. Regional geology of Southwest China[M]. Wuhan : China University of Geosciences Press (in Chinese)(in Chinese with English abstract).

    Google Scholar

    [33] 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学-中国地质大学学报, 24 (1): 1-12

    Google Scholar

    Yin H F, Wu S B, Du Y S, et al. , 1999. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science-Journal of China University of Geosciences, 24 (1): 1-12 .

    Google Scholar

    [34] 袁吉文, 万青青, 2004. 云南城乡居民膳食结构的20年变迁[J]. 昆明医学院学报, 25 (专辑): 4-9

    Google Scholar

    Yuan J W, Wan Q Q, 2004. The transition of dietary pattern of residents in rural and urban of Yunnan between 1982 and 2002[J]. Academic Journal of Kunming Medical College, 25: 4-9 .

    Google Scholar

    [35] 曾琴琴, 王永华, 刘才泽, 等, 2021. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 41 (4): 657-663

    Google Scholar

    Zeng Q Q, Wang Y H, Liu C Z, et al. , 2021. A study on distribution of elements of soil in Nanbu county, Sichuan province[J]. Sedimentary Geology and Tethyan Geology, 41 (4): 657-663 .

    Google Scholar

    [36] 张风雷, 郑循艺, 陈琦伟, 等, 2017. 重金属地质高背景区及工业区农作物重金属健康风险评价——以重庆市梁平区现代农业示范区为例[J]. 地球与环境, 45 (5): 567-575

    Google Scholar

    Zhang F H, Zheng X Y, Chen Q W, et al. , 2017. Health risk assessment of heavy metals in crops from geological background of high heavy metals and industrial suburb—taking a modern agricultural demonstration zone of Liangping county as an example[J]. Earth and Environment, 45 (5): 567-575 .

    Google Scholar

    [37] 张富贵, 成晓梦, 马宏宏, 等, 2022. 科学构建土壤重金属高背景区生态风险评价方法的探讨[J]. 浙江大学学报(农业与生命科学版), 48 (1): 57-67

    Google Scholar

    Zhang F G, Cheng X M, Ma H H, et al. , 2022. Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 48 (1): 57-67 .

    Google Scholar

    [38] 张强, 万青青, 刘志涛, 等, 2016. 云南城乡居民营养素摄入状况及膳食结构分析[J]. 中国公共卫生, 32 (5): 661-663 doi: 10.11847/zgggws2016-32-05-26

    CrossRef Google Scholar

    Zhang Q, Wan Q Q, Liu Z T, et al. , 2016. Nutrients intake and dietary structure among residents in Yunnan province[J]. China Journal Public Health, 32(5): 661-663 . doi: 10.11847/zgggws2016-32-05-26

    CrossRef Google Scholar

    [39] 张艳, 王丹, 李黎, 2013. 豌豆对U和Cd复合胁迫反应及其积累特征[J]. 辐射研究与辐射工艺学报, 31 (1): 010401

    Google Scholar

    Zhang Y, Wang D, Li L, 2013. Response of peas to U and Cd combined stress and their accumulation characteristic[J]. Journal of Radiation Research and Radiation Proces, 31 (1): 010401 .

    Google Scholar

    [40] 张振明, 肖艳辉, 何金明, 等, 2015. 钼对低镉水平下小白菜的生长及镉含量的影响[J]. 韶关学院学报·自然科学, 36 (4): 36-40

    Google Scholar

    Zhang Z M, Xiao Y H, He J M, et al. , 2015. Effect of molybdenum on growth and cadmium content in Chinese white cabbage under low cadmium concentration medium[J]. Journal of Shaoguan University-Natural Science, 36 (4): 36-40 .

    Google Scholar

    [41] Zhao K, Zhang W, Zhou L, et al. , 2009. Modeling transfer of heavy metals in soil–rice system and their risk assessment in paddy fields[J]. Environmental Earth Sciences, 59 (3) : 519-527. doi: 10.1007/s12665-009-0049-x

    CrossRef Google Scholar

    [42] 赵中秋, 后立胜, 蔡运龙, 2006. 西南喀斯特地区土壤退化过程与机理探讨[J]. 地学前缘, 13 (3): 185-189 doi: 10.3321/j.issn:1005-2321.2006.03.025

    CrossRef Google Scholar

    Zhao Z Q, Hou L S, Cai Y L, 2006. The process and mechanism of soil degradation in karst area in Southwest China[J]. Earth Science Frontiers, 13 (3): 185-189 . doi: 10.3321/j.issn:1005-2321.2006.03.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(6)

Article Metrics

Article views(189) PDF downloads(158) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint