2024 Vol. 44, No. 1
Article Contents

WU Peng, ZHANG Shaobing, ZHENG Yongfei, ZHANG Xiaoju, XU Zhengqi, SHI Zeming. 2024. Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005
Citation: WU Peng, ZHANG Shaobing, ZHENG Yongfei, ZHANG Xiaoju, XU Zhengqi, SHI Zeming. 2024. Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005

Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China

  • Early Neoproterozoic subduction-related magmatism in South China provides an important constraint for revealing the amalgamation and accretion of marginal blocks in Rodinia. Herein, we focus on the early Neoproterozoic igneous rocks exposed in the northwestern margin of the Yangtze block, South China. After compiling the geochronological data, geochemical characteristics, and isotopic compositions of early Neoproterozoic igneous rocks, the nature of source, petrogenesis, and the tectonic settings were addressed. The results show that the igneous rocks with ages of about 1.0 to 0.9 Ga have trace element compositions similar to island arc basalts with highly incompatible elements slightly lower than continental arcs, depleted Sr-Nd-Hf isotope compositions and zircon δ18O values slightly lower than mantle values, suggesting a likely intra-oceanic subduction origin. By comparison, the magmatic rocks with ages of about 0.9 to 0.83 Ga have pronounced enrichment in LILEs and LREEs, significant depletion in HFSE, moderately enriched Sr-Nd-Hf isotopes and zircon δ18O values fall in or higher than mantle range, which suggests that they were most probably formed in a continental arc setting. The secular variation trends of whole-rock Nd and zircon Hf isotopes in mafic rocks reveal the periodic enrichment and depletion of mantle caused by repeatedly advancing and retreating subduction, which further triggers alternating regimes of contraction and extension tectonics. The results depict the early Neoproterozoic subduction accretion history in the northwestern margin of the Yangtze block.

  • 加载中
  • [1] Ashwal L D, Demaiffe D, Torsvik T H, 2002. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: The case for an Andean-type arc origin[J]. Journal of Petrology, 43: 45–83. doi: 10.1093/petrology/43.1.45

    CrossRef Google Scholar

    [2] Berkana W, Wu H, Ling W, et al. , 2022. Neoproterozoic metavolcanic suites in the Micangshan terrane and their implications for the tectonic evolution of the NW Yangtze block, South China[J]. Precambrian Research, 368: 106476. doi: 10.1016/j.precamres.2021.106476

    CrossRef Google Scholar

    [3] 蔡文春, 曾忠诚, 赵鹏彬, 等, 2021. 南秦岭东部新元古代埃达克质岩的发现及其地质意义[J]. 地质学报, 95(3): 686-702

    Google Scholar

    Cai W C, Zeng Z C, Zhao P, et al. , 2021. The discovery of Neoproterozoic adakitic rocks in the east of South Qinling and its geological significance[J]. Acta Geologica Sinica, 95: 686–702

    Google Scholar

    [4] Cawood P A, Wang Y J, Xu Y J, et al. , 2013. Locating south China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 41: 903–906.

    Google Scholar

    [5] Cawood P A, Pisarevsky S A, 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly[J]. Precambrian Research, 292: 386–397 doi: 10.1016/j.precamres.2017.01.031

    CrossRef Google Scholar

    [6] Cawood P A, Kröner A, Collins W, et al. , 2009. Accretionary orogens through Earth history[J]. Geological Society, London, Special Publications, 318: 1–36. doi: 10.1144/SP318.1

    CrossRef Google Scholar

    [7] Chang L, Zhang S, Li H, et al. , 2022. New paleomagnetic insights into the Neoproterozoic connection between South China and India and their position in Rodinia[J]. Geophysical Research Letters, 49: e2022GL098348. doi: 10.1029/2022GL098348

    CrossRef Google Scholar

    [8] Chen Q, Sun M, Zhao G, et al. , 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 326-327: 1–18. doi: 10.1016/j.lithos.2018.12.005

    CrossRef Google Scholar

    [9] Chen W T, Sun W H, Wang W, et al. , 2014. “Grenvillian” intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Res, 242: 138–153. doi: 10.1016/j.precamres.2013.12.019

    CrossRef Google Scholar

    [10] Chen W T, Sun W H, Zhou M F, et al. , 2018. Ca. 1050 Ma intracontinental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Res, 309: 22–44. doi: 10.1016/j.precamres.2017.02.011

    CrossRef Google Scholar

    [11] Collins W J, Richards S W, 2008. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 36: 559–562.

    Google Scholar

    [12] Condie K C, 2008. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids[J]. Geology, 36: 611–614.

    Google Scholar

    [13] 崔建堂, 王峰, 段建国, 等, 2013. 南秦岭西乡群孙家河组锆石SHRIMP U-Pb年龄及其构造地质意义[J]. 沉积与特提斯地质, 33: 1-5

    Google Scholar

    Cui J, Wang F, Duan J, et al. , 2013. The Sunjiahe Formation of the Xixiang Group, southern Qinling Ranges: SHRIMP zircon U-Pb age and its tectonic implications[J]. Sedimentary Geology and Tethyan Geology, 33: 1–5

    Google Scholar

    [14] Deng H, Peng S B, Polat A, et al. , 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings[J]. Precambrian Research, 289: 75–94. doi: 10.1016/j.precamres.2016.12.003

    CrossRef Google Scholar

    [15] 邓奇, 王剑, 汪正江, 等, 2013. 扬子北缘元古宇马槽园群时代归属新证据: 对地层对比和古地理格局的启示[J]. 地质通报, 32(4): 631-638

    Google Scholar

    Deng Q, Wang J, Wang Z, et al. , 2013, New evidence for the age of the Macaoyuan Group on the northern margin of the Yangtze block, South China—implications for stratigraphic correlation and palaeogeographic framework[J]. Geological Bulletin of China, 32(4): 631–638

    Google Scholar

    [16] 邓奇, 汪正江, 任光明, 等, 2020. 扬子地块西北缘~2.09 Ga和~1.76 Ga花岗质岩石: Columbia超大陆聚合-裂解的岩浆记录[J]. 地球科学, 45(9): 3295-3312

    Google Scholar

    Deng Q, Wang Z, Ren G, 2020. Identification of the ~2.09 Ga and ~1.76 Ga granitoids in the northwestern Yangtze Block: Records of the assembly and break-up of Columbia supercontinent[J]. Earth Science, 45: 3295–3312

    Google Scholar

    [17] 邓奇, 崔晓庄, 汪正江, 等, 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质, 43(1): 212−225.

    Google Scholar

    Deng Q, Cui X, Wang Z, et al. , 2023. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedimentary Geology and Tethyan Geology, 43(1): 212–225 .

    Google Scholar

    [18] Dong Y P, Liu X M, Santosh M, et al. , 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 196-197: 247–274. doi: 10.1016/j.precamres.2011.12.007

    CrossRef Google Scholar

    [19] Dong Y P, Liu X M, Santosh M, et al. , 2011. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002

    CrossRef Google Scholar

    [20] Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29: 1–40. doi: 10.1016/j.gr.2015.06.009

    CrossRef Google Scholar

    [21] Dong Y P, Sun S S, Yang Z, et al. , 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015

    CrossRef Google Scholar

    [22] Druschke P, Hanson A D, Yan Q, et al. , 2006. Stratigraphic and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental arc, Central China: Rodinia implications[J]. Journal of Geology, 114: 627–636. doi: 10.1086/506162

    CrossRef Google Scholar

    [23] Feng Q L, Du Y S, Yin H F, et al., 1996. Carboniferous radiolaria fauna firstly discovered in Mian-Lüe ophiolitic mélange belt of south Qinling Mountains[J]. Science in China (Series D) 39 (Suppl. I): 87 – 92.

    Google Scholar

    [24] Gan B P, Lai S C, Qin J F, et al. , 2017. Neoproterozoic alkaline intrusive complex in the northwestern Yangtze Block, Micang Mountains region, South China: petrogenesis and tectonic significance[J]. International Geology Review, 59: 311–332. doi: 10.1080/00206814.2016.1258676

    CrossRef Google Scholar

    [25] Gao F, Pei X Z, Li R B, et al. , 2020. Neoproterozoic tectonic evolution of the northwestern margin of the Yangtze Block (southwestern China): Evidence from sandstone geochemistry and detrital zircon U-Pb ages of the Hengdan Group[J]. Precambrian Research, 344: 105737. doi: 10.1016/j.precamres.2020.105737

    CrossRef Google Scholar

    [26] 耿英英, 2010. 扬子地块北缘花岗岩SHRIMP锆石U-Pb定年及地球化学特征研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    Geng Y Y, 2010. SHRIMP U-Pb zircon geochronology and geochemistry study of Neoproterozoic granites in the northern margin of Yangtze continent[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).

    Google Scholar

    [27] 宫相宽, 陈丹玲, 赵姣, 2013. 陕西铜厂闪长岩地球化学、锆石U-Pb定年及Lu-Hf同位素研究[J]. 西北地质, 46(3): 50-63

    Google Scholar

    Gong X, Chen D, Zhao J. , 2013. Studies on Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope Composition of the Tongchang Diorites, Shaanxi Province[J]. Northwestern Geology, 46(3): 50-63

    Google Scholar

    [28] He Y, Wu Y B, Zhao Y, et al. , 2023. Neoproterozoic amphibolite-facies metamorphism of the Douling complex in the northern Yangtze Craton and its tectonic implications: Constraints from petrology and zircon U-Pb-Hf-O isotopes[J]. Precambrian Research, 390: 107039. doi: 10.1016/j.precamres.2023.107039

    CrossRef Google Scholar

    [29] Hoffman P F, 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?[J]. Science, 252: 1409–1412. doi: 10.1126/science.252.5011.1409

    CrossRef Google Scholar

    [30] Hu J, Liu X C, Qu W, et al. , 2019. Mid-Neoproterozoic amphibolite facies metamorphism at the northern margin of the Yangtze craton[J]. Precambrian Research, 326: 333–343. doi: 10.1016/j.precamres.2017.10.010

    CrossRef Google Scholar

    [31] Hu P Y, Zhai Q G, Wang J, et al. , 2017. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 298: 107–122. doi: 10.1016/j.precamres.2017.06.005

    CrossRef Google Scholar

    [32] Huang Y, Wang X L, Li J Y, et al. , 2021b. Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area[J]. Precambrian Research, 365: 106382. doi: 10.1016/j.precamres.2021.106382

    CrossRef Google Scholar

    [33] Hui B, Dong Y P, Cheng C, et al. , 2017. Zircon U–Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China[J]. Precambrian Research, 301: 65–8. doi: 10.1016/j.precamres.2017.09.003

    CrossRef Google Scholar

    [34] Hui B, Dong Y P, Liu G, et al. , 2020a. Origin of mafic intrusions in the Micangshan Massif, Central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block[J]. Journal of Asian Earth Science, 190: 104132. doi: 10.1016/j.jseaes.2019.104132

    CrossRef Google Scholar

    [35] Hui B, Dong Y P, Zhang F F, et al. , 2020b. Neoproterozoic active margin in the northwestern Yangtze Block, South China: New clues from detrital zircon U-Pb geochronology and geochemistry of sedimentary rocks from the Hengdan Group[J]. Geological Magazine, 158 (5): 842–858.

    Google Scholar

    [36] Hui B, Dong Y P, Zhang F F, et al. , 2021. Petrogenesis and tectonic implications of the Neoproterozoic mafic intrusions in the Bikou Terrane along the northwestern margin of the Yangtze Block, South China[J]. Ore Geology Reviews, 131: 104014. doi: 10.1016/j.oregeorev.2021.104014

    CrossRef Google Scholar

    [37] 江新胜, 崔晓庄, 卓皆文, 等, 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31-37

    Google Scholar

    Jiang X S, Cui X Z, Zhuo J W, et al. , 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 40(3): 31-37

    Google Scholar

    [38] Jing X, Yang Z, Tong Y, et al. , 2015. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 268: 194–211. doi: 10.1016/j.precamres.2015.07.007

    CrossRef Google Scholar

    [39] Jing X, Yang Z, Evans D A D, et al. , 2019. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 530: 115880.

    Google Scholar

    [40] Jing X, Evans D A D, Yang Z, et al. , 2021. Inverted south China A novel configuration for Rodinia and its breakup[J]. Geology, 49: 463–467.

    Google Scholar

    [41] Kemp A I S, Hawkesworth C J, Collins W J, et al. , 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 284: 455–466. doi: 10.1016/j.jpgl.2009.05.011

    CrossRef Google Scholar

    [42] Kuzmichev A B, Bibikova E V, Zhuravlev D Z, 2001. Neoproterozoic( ~800 Ma) orogeny in the Tuva-Mongolia massif (Siberia): Island-continent collision at the northeast Rodinia margin[J]. Precambrian Research, 110: 109-126. doi: 10.1016/S0301-9268(01)00183-8

    CrossRef Google Scholar

    [43] 赖绍聪, 张国伟, 杨永成, 等, 1998. 南秦岭勉县—略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义[J]. 地球化学, 27(3): 283 − 293

    Google Scholar

    Lai S C, Zhang G W, Yang Y C, et al., 1998. Geochemistry of the ophiolite and island arc volcanic rock in the Mianxian-Lueyang suture zone, Southern Qinling and their tectonic signatures[J]. Geochimica 27(3): 283 − 293 (in Chinese with English abstract).

    Google Scholar

    [44] Lai S C, Li Y F, Qin J F, 2007. Geochemistry and LA-ICP-MS zircon U–Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane[J]. Science in China (Series D) 50 (Suppl. II): 305 – 313.

    Google Scholar

    [45] 李春昱, 刘仰文, 朱宝清, 等, 1978. 秦岭及祁连山构造发展史[J]. 西北地质, 1 – 12.

    Google Scholar

    Li C Y, Liu Y W , Zhu B Q, et al., 1978. The history of Qinling Mountains and Qilian Mountains of the tectonic developments[J]. Northwestern Geology, (4): 1 – 12(in Chinese with English abstract).

    Google Scholar

    [46] Lieberman B S, 1997. Early Cambrian paleogeography and tectonic history: A biogeographic approach[J]. Geology, 25: 1039–1042.

    Google Scholar

    [47] 李怀坤, 张传林, 相振群, 等, 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报, 29(2): 673-697

    Google Scholar

    Li H K, Zhang C L, Xiang Z Q, et al. , 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 29: 673-697 (in Chinese with English Abstract)

    Google Scholar

    [48] 李怀坤, 田辉, 周红英, 等, 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U-Pb年龄及Hf同位素证据[J]. 地学前缘, 23(6): 186-201

    Google Scholar

    Li H K, Tian H, Zhou H, et al. , 2016. Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the northern margin of the Yangtze Craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics[J]. Earth Science Frontiers, 23(6): 186-201 (in Chinese with English Abstract)

    Google Scholar

    [49] Li X H, Li Z X, Ge W C, et al. , 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca 825 Ma?[J]. Precambrian Research, 122: 45-83. doi: 10.1016/S0301-9268(02)00207-3

    CrossRef Google Scholar

    [50] Li X H, Li W X, Li Z X, et al. , 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174: 117–128. doi: 10.1016/j.precamres.2009.07.004

    CrossRef Google Scholar

    [51] Li J Y, Wang X L, Gu Z D, 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly[J]. Precambrian Research, 309: 181–197 doi: 10.1016/j.precamres.2017.04.040

    CrossRef Google Scholar

    [52] Li J Y, Wang X L, Wang D, et al. , 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction–accretion[J]. Precambrian Research, 355: 106081. doi: 10.1016/j.precamres.2020.106081

    CrossRef Google Scholar

    [53] Li S G, Hou Z H, Yang Y C, et al., 2004. Timing and geochemistry characters of the Sanchazi magmatic arc in Mianlüe tectonic zone, South Qinling[J]. Science in China (Ser. D) 47: 317 – 328.

    Google Scholar

    [54] Li Z X, Zhang L H, Powell C M, 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23: 407–410.

    Google Scholar

    [55] Li Z X, Li X H, Kinny P D, et al. , 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122: 85–109. doi: 10.1016/S0301-9268(02)00208-5

    CrossRef Google Scholar

    [56] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis[J]. Precambrian Research, 160(1-2): 179–210. doi: 10.1016/j.precamres.2007.04.021

    CrossRef Google Scholar

    [57] Li Z X, Li X H, Zhou H W, et al. , 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia[J]. Geology, 30(2): 163. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    CrossRef Google Scholar

    [58] Li Z X, Wartho J A, Occhipinti S, et al. , 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 159: 79–94. doi: 10.1016/j.precamres.2007.05.003

    CrossRef Google Scholar

    [59] 林振文, 秦艳, 周振菊, 等, 2013. 南秦岭勉略带铧厂沟火山岩锆石U-Pb年代学及地球化学研究[J]. 岩石学报, 29: 83-94

    Google Scholar

    Lin Z W, Qin Y, Zhou Z J, et al. , 2013. Zircon U-Pb dating and geochemistry of the volcanic rocks at Huachanggou area, Mian-Lue suture, South Qinling[J]. Acta Petrologica Sinica, 29: 83–94

    Google Scholar

    [60] Ling W, Gao S, Zhang B, et al. , 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X

    CrossRef Google Scholar

    [61] Lister G S, Forster M A, Rawlings T J. , 2001. Episodicity during orogenesis. In: MILLER, J. A. , HOLDSWORTH, R. E. , BUICK, I. S. & HAND, M. (eds) Continental Reactivaton and Reworking[J]. Geological Society, London, Special Publications, 184: 89–113. doi: 10.1144/GSL.SP.2001.184.01.06

    CrossRef Google Scholar

    [62] 刘仁燕, 牛宝贵, 和政军, 等, 2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年[J]. 地质通报, 30: 448-460

    Google Scholar

    Liu R Y, Niu B G, He Z J, et al. , 2011. LA-ICP-MS zircon U-P geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shaanxi, China[J]. Geological Bulletin of China, 30: 448–460

    Google Scholar

    [63] 刘春花, 吴才来, 郜源红, 等, 2014. 南秦岭东江口—柞水和梨园堂花岗岩年代学与锆石Lu-Hf同位素组成[J]. 岩石学报, 30: 2402-2420

    Google Scholar

    Liu C H, Wu C L, Gao Y H, et al. , 2014. LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic system of Dongjiangkou, Zhashui, and Liyuantang granitoid intrusions, South Qinling belt, central China[J]. Acta Petrologica Sinica, 30: 2402–2420

    Google Scholar

    [64] Lu K, Li X H, Zhou J L, et al. , 2020. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan Complex[J]. Precambrian Research, 346: 105787. doi: 10.1016/j.precamres.2020.105787

    CrossRef Google Scholar

    [65] Luo B J, Liu R, Zhang H F, et al. , 2018. Neoproterozoic continental back-arc rift development in the Northwestern Yangtze Block: evidence from the Hannan intrusive magmatism[J]. Gondwana Research, 59: 27–42. doi: 10.1016/j.gr.2018.03.012

    CrossRef Google Scholar

    [66] Marsh J H, Culshaw N G, 2014. Timing and conditions of high-pressure metamorphism in the western Grenville Province: Constraints from accessory mineral composition and phase equilibrium modeling[J]. Lithos, 200-201: 402–417. doi: 10.1016/j.lithos.2014.04.016

    CrossRef Google Scholar

    [67] Meng Q R, Zhang G W, 1999. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 27: 123–126.

    Google Scholar

    [68] Moores E M, 1991. Southwest U. S. - East Antarctic (SWEAT) Connection: A Hypothesis[J]. Geology, 19(5): 425. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2

    CrossRef Google Scholar

    [69] Niu J, Li Z X, Zhu W, 2016. Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: Implications for a c. 820–800 Ma true polar wander event and the reconstruction of Rodinia[J]. Geological Society, London, Special Publications, 424: 191–211. doi: 10.1144/SP424.11

    CrossRef Google Scholar

    [70] Park J K, Buchan K L, Harlan S S, 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America[J]. Earth and Planetary Science Letters, 132: 129-139. doi: 10.1016/0012-821X(95)00059-L

    CrossRef Google Scholar

    [71] Park Y, Swanson-Hysell N L, Xian H, et al. , 2021. A consistently high-latitude South China from 820 to 780 Ma: Implications for exclusion from Rodinia and the feasibility of large-scale true polar wander[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB021541. doi: 10.1029/2020JB021541

    CrossRef Google Scholar

    [72] Peng S B, Kusky T M, Jiang X F, et al. , 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 21: 577-594. doi: 10.1016/j.gr.2011.07.010

    CrossRef Google Scholar

    [73] Qi H, Zhao J H, 2020. Petrogenesis of the Neoproterozoic low-δ18O granitoids at the western margin of the Yangtze Block in South China[J]. Precambrian Research, 351: 105953. doi: 10.1016/j.precamres.2020.105953

    CrossRef Google Scholar

    [74] Qin K L, Song S G, He S P, 1992. The geological characteristics of the Yudongzi granite-greenstone terrain and its gold-bearing property in Mianluening area Shaanxi[J]. Northwest Geoscience, 13(1), 65 – 74 (in Chinese with English Abstract).

    Google Scholar

    [75] Qiu X F, Ling W L, Liu X M, et al. , 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton[J]. Precambrian Research, 191(3-4): 101-119. doi: 10.1016/j.precamres.2011.09.011

    CrossRef Google Scholar

    [76] 邱艳生, 胡正祥, 杨青雄, 等, 2013. 华南“马槽园群”年代及其地层学意义[J]. 资源环境与工程, 27(3): 328-334 doi: 10.3969/j.issn.1671-1211.2013.03.024

    CrossRef Google Scholar

    Qiu Y, Hu Z, Yang Q, et al. , 2013. LA-ICP-MS U-Pb Dating for the Macaoyuan Group in South China and Its Stratigraphic Significance[J]. Resources Environment and Engineering, 27(3): 328-334 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-1211.2013.03.024

    CrossRef Google Scholar

    [77] Rino S, Kon Y, Sato W, et al. , 2008. The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 14: 51–72. doi: 10.1016/j.gr.2008.01.001

    CrossRef Google Scholar

    [78] Roy A, Kagami H, Yoshida M, et al. , 2006. Rb-Sr and Sm-Nd dating of different metamorphic events from the Sausar Mobile Belt, central India: Implications for Proterozoic crustal evolution[J]. Journal of Asian Earth Sciences, 26: 61-76. doi: 10.1016/j.jseaes.2004.09.010

    CrossRef Google Scholar

    [79] Rudnick R L, Gao S, 2003. Composition of the continental crust. Treatise on Geochemistry[M]. Elsevier, 3: 1 – 64.

    Google Scholar

    [80] Saito S, Tani K, 2017. Transformation of juvenile Izu–Bonin–Mariana oceanic arc into mature continental crust: an example from the Neogene Izu collision zone granitoid plutons, Central Japan[J]. Lithos, 277: 228–240. doi: 10.1016/j.lithos.2016.07.035

    CrossRef Google Scholar

    [81] Shi Y, Liu D, Zhang Z, et al. , 2007. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton[J]. Acta Geologica Sinica, 81: 239-243 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2007.tb00947.x

    CrossRef Google Scholar

    [82] Stern R J, 2008. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 14: 33–50. doi: 10.1016/j.gr.2007.08.006

    CrossRef Google Scholar

    [83] Sun L, Wang W, Lu G, et al. , 2021. Neoproterozoic geodynamics of South China and implications on the Rodinia configuration: the Kunyang Group revisited[J]. Precambrian Research, 363: 106338. doi: 10.1016/j.precamres.2021.106338

    CrossRef Google Scholar

    [84] Sun L, Wang W, Pandit M, et al. , 2022. Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration[J]. Precambrian Research, 378: 106779. doi: 10.1016/j.precamres.2022.106779

    CrossRef Google Scholar

    [85] Sun Z M, Wang X L, Qi L, et al. , 2018. Formation of the Neoproterozoic Ophiolites in Southern China: New Constraints from Trace Element and PGE Geochemistry and Os Isotopes[J]. Precambrian Research, 309: 88-101. doi: 10.1016/j.precamres.2017.12.042

    CrossRef Google Scholar

    [86] Torsvik T H, Ashwal L D, Tucker R D, et al. , 2001. Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent: The India link[J]. Precambrian Research, 100: 47-59.

    Google Scholar

    [87] Tucker R D, Ashwal L D, Torsvik T H, 2001. U-Pb geochronology of Seychelles granitoids: A Neoproterozoic continental arc fragment[J]. Earth and Planetary Science Letters, 187: 27-38. doi: 10.1016/S0012-821X(01)00282-5

    CrossRef Google Scholar

    [88] 王涛, 王宗起, 闫全人, 等, 2011. 南秦岭白水江群变基性火山岩块体的形成时代及其地球化学特征[J]. 岩石学报, 27(3): 645-656

    Google Scholar

    Wang T, Wang Z, Yan Q, et al. , 2011. The formation age and geochemical characteristics of the metavolcanic rock blocks of the Baishuijiang Group in South Qinling[J]. Acta Petrologica Sinica, 27(3): 645-656 (in Chinese with English Abstract)

    Google Scholar

    [89] Wang X L, Liu F, Li J, et al. , 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics[J]. Science China Earth Sciences, 63(12): 2068–2086 (in Chinese). doi: 10.1007/s11430-020-9698-0

    CrossRef Google Scholar

    [90] Wang X L, Zhou J C, Griffin W L, et al. , 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154–171. doi: 10.1016/j.precamres.2013.12.023

    CrossRef Google Scholar

    [91] Wang X L, Zhou J C, Qiu J S, et al. , 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 145: 111–130. doi: 10.1016/j.precamres.2005.11.014

    CrossRef Google Scholar

    [92] Wang M, Nebel O, Wang C Y, 2016. The flaw in the crustal “zircon archive”: Mixed hf isotope signatures record progressive contamination of late-stage liquid in mafic-ultramafic layered intrusions[J]. Journal of Petrology, 57: 27–52. doi: 10.1093/petrology/egv072

    CrossRef Google Scholar

    [93] Wang W, Cawood P A, Zhou M F, et al. , 2017. Low-δ18O Rhyolites From the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia[J]. Geophysical Research Letters, 40: 10298–10305.

    Google Scholar

    [94] Wang W, Liu S W, Feng Y F, et al. , 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics[J]. Gondwana Research, 22: 699–716. doi: 10.1016/j.gr.2011.11.015

    CrossRef Google Scholar

    [95] Wang X C, Li X H, Li W X, et al. , 2008. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820–810 Ma continental flood basalts?[J]. Bulletin of the Geological Society of America, 120: 1478–1492. doi: 10.1130/B26310.1

    CrossRef Google Scholar

    [96] 王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714-735

    Google Scholar

    Wang X, Zhou J, Chen X, et al. , 2017. Formation and Evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735

    Google Scholar

    [97] Wu L G, Chen Y, Palin R M, et al. , 2024. Reinitiation of modern-style plate tectonics in the Early Neoproterozoic: Evidence from a ∼930 Ma blueschist-facies terrane in South China[J]. Precambrian Research, 401: 107276. doi: 10.1016/j.precamres.2023.107276

    CrossRef Google Scholar

    [98] Wu R X, Zheng Y F, Wu Y B, et al. , 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 146: 179–212. doi: 10.1016/j.precamres.2006.01.012

    CrossRef Google Scholar

    [99] Wu P, Zhang S B, Zheng Y F, et al. , 2021. The accretion history of the South China Block at its northwest margin in the Neoproterozoic: records from the Changba Complex in the Mian-Lue Zone[J]. Precambrian Research, 352: 106006. doi: 10.1016/j.precamres.2020.106006

    CrossRef Google Scholar

    [100] Wu P, Zhang S B, Li Z X, et al. , 2023. Secular change in the nature of mantle and tectonic evolution of northwestern margin of the Yangtze Block during Neoproterozoic: Constraints from the mafic intrusions and associated granitoids of the Hannan and Xiaomoling complexes[J]. Precambrian Research, 393: 107094. doi: 10.1016/j.precamres.2023.107094

    CrossRef Google Scholar

    [101] Wu P, Zhang S B, Zheng Y F, et al. , 2020. The occurrence of Neoproterozoic low δ18O igneous rocks in the northwestern margin of the South China Block: Implications for the Rodinia configuration[J]. Precambrian Research, 347: 105841. doi: 10.1016/j.precamres.2020.105841

    CrossRef Google Scholar

    [102] Wu P, Zhang S B, Zheng Y F, et al. , 2019. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block[J]. Precambrian Research, 321: 221-243. doi: 10.1016/j.precamres.2018.12.015

    CrossRef Google Scholar

    [103] Wu Y B, Gao S, Zhang H F, et al., 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 200–203: 26 – 37.

    Google Scholar

    [104] Xian H, Zhang S, Li H, et al. , 2020. Geochronological and palaeomagnetic investigation of the Madiyi Formation, lower Banxi Group, South China: Implications for Rodinia reconstruction[J]. Precambrian Research, 336: 105494. doi: 10.1016/j.precamres.2019.105494

    CrossRef Google Scholar

    [105] Xu J F, Castillo P R, Li X H, et al. , 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J]. Earth and Planetary Science Letters, 198: 323–337. doi: 10.1016/S0012-821X(02)00536-8

    CrossRef Google Scholar

    [106] 徐学义, 夏林圻, 陈隽璐, 等, 2009. 扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究[J]. 岩石学报, 25, 3309 − 3326.

    Google Scholar

    Xu X Y, Xia L Q, Chen J L, et al., 2009. Zircon U-Pb dating and geochemical study of volcanic rocks Group in northern margin of Yangtze Plate in from Sunjiahe Formation of Xixiang[J]. Acta Petrologica Sinica, 25: 3309 − 3326 (in Chinese with English abstract).

    Google Scholar

    [107] 阎明, 刘树文, 李秋根, 等, 2014. 南秦岭迷魂阵岩体LA-ICP-Ms U-Pb年代学和Lu-Hf同位素特征[J]. 岩石学报, 30: 390 − 400

    Google Scholar

    Yan M, Liu S W, Li Q G, et al., 2014. LA-ICP-MS zircon U-Pb chronology and Lu-Hf isotopic features of the Mihunzhen pluton in the South Qinling tectonic belt[J]. Acta Petrologica Sinica. 30: 390 − 400 (in Chinese with English abstract).

    Google Scholar

    [108] 闫全人, 王宗起, 闫臻, 等, 2007. 秦岭勉略构造混杂带康县—勉县段蛇绿岩块—铁镁质岩块的SHRIMP年代及其意义[J]. 地质论评, 53: 755-764

    Google Scholar

    Yan Q R, Wang Z Q, Yan Z, et al. , 2007. SHRIMP analyses for ophiolitic-mafic blocks in the Kangxian-Mianxian section of the Mianxian-Lueyang melange: their geological implications[J]. Geological Review, 53: 755–764

    Google Scholar

    [109] Yan Q, Hanson A D, Wang Z, et al. , 2004, Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China: Implications for Rodinia reconstruction[J]. International Geology Review, 46: 817–832. doi: 10.2747/0020-6814.46.9.817

    CrossRef Google Scholar

    [110] Yang Z N, Yang K G, Polat A, et al. , 2018. Early crustal evolution of the eastern Yangtze Block: evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area[J]. Precambrian Research, 309: 248–270. doi: 10.1016/j.precamres.2017.05.011

    CrossRef Google Scholar

    [111] Yang Z, Cawood P A, Zi J W, et al. , 2024. Mid-Neoproterozoic (ca. 845 Ma) metamorphism of the southwestern Yangtze Block and its tectonic implications[J]. Precambrian Research, 400: 107267. doi: 10.1016/j.precamres.2023.107267

    CrossRef Google Scholar

    [112] 杨志军, 2021. 南秦岭陡岭地块新元古代岩浆作用及地质意义[D]. 西安: 长安大学(西安).

    Google Scholar

    Yang Z J, 2021. Neoproterozoic magmatism of Douling block in South Qinling and its geological significance[D]. Xi’an: Chang’an University(Xi’an)(in Chinese with English abstract).

    Google Scholar

    [113] 叶霖, 程增涛, 陆丽娜, 等, 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学[J]. 岩石学报, 25(11): 2866-2876

    Google Scholar

    Ye L, Cheng Z, Lu L, et al. , 2009. Petrological geochronology and zircon SHRIMP U-Pb of Tongchang diorites, Mianluening area, Southern Shaanxi province, China[J]. Acta Petrologica Sinica, 25(11): 2866-2876

    Google Scholar

    [114] Ye M F, Li X H, Li W X, et al. , 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block[J]. Gondwana Research, 12(1-2): 144-156. doi: 10.1016/j.gr.2006.09.001

    CrossRef Google Scholar

    [115] Zhang G W, Meng Q R, Lai S C, 1995. Tectonics and structure of the Qinling Orogenic belt[J]. Science China (Ser. B), 38: 1379-1394 (in Chinese).

    Google Scholar

    [116] 张少兵, 吴鹏, 郑永飞, 2019. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录[J]. 地球科学, 44(12): 4157-4166

    Google Scholar

    Zhang S B, Wu P, Zheng Y F, 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block[J]. Earth Science, 44(12): 4157-4166

    Google Scholar

    [117] Zhang S B, Wu R X, Zheng Y F, 2012. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 220–221: 45 – 64.

    Google Scholar

    [118] Zhang S B, Zheng Y F, Wu P, et al. , 2020. The nature of subduction system in the Neoarchean: Magmatic records from the northern Yangtze Craton, South China[J]. Precambrian Research, 347: 105834. doi: 10.1016/j.precamres.2020.105834

    CrossRef Google Scholar

    [119] 张宗清, 唐索寒, 张国伟, 等, 2005. 勉县—略阳蛇绿混杂岩带镁铁质—安山质火山岩块年龄和该带构造演化的复杂性[J]. 地质学报, 79: 531-539

    Google Scholar

    Zhang Z Q, Tang S H, Zhang G W, et al. , 2005. Ages of metamorphic mafic-andesitic volcanic rock blocks and tectonic evolution complexity of Mianxian-Lueyang ophiolitic melange belt[J]. Acta Geologica Sinica, 79: 531–539

    Google Scholar

    [120] Zhao J H, Zhou M F, Yan D P, et al. , 2008. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 163: 189–209. doi: 10.1016/j.precamres.2007.11.003

    CrossRef Google Scholar

    [121] Zhao J H, Zhou M F, Yan D P, et al. , 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 39: 299–302.

    Google Scholar

    [122] Zhao J H, Zhou M F, 2008. Neoproterozoic adakitic suite at the northwestern margin of the Yangtze Block, China: evidence for partial melting of thickened lower crust and secular crustal evolution[J]. Lithos, 104: 231–248. doi: 10.1016/j.lithos.2007.12.009

    CrossRef Google Scholar

    [123] Zhao J H, Zhou M F, 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 107, 152 – 168.

    Google Scholar

    [124] Zheng Y F, Wu R X, Wu Y B. , et al. , 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163: 351–383. doi: 10.1016/j.precamres.2008.01.004

    CrossRef Google Scholar

    [125] Zheng Y F, Zhao G, 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65: 329–334. doi: 10.1016/j.scib.2018.12.029

    CrossRef Google Scholar

    [126] Zheng Y F, Wu Y B, Gong B, et al., 2007. Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite[J]. Earth and Planetary Science Letters, 256, 196 − 210.

    Google Scholar

    [127] Zhou M F, Kennedy A K, Sun M, et al. , 2002a. Neoproterozoic arc-related mafic intrusions along the Northern Margin of South China: implications for the Accretion of Rodinia[J]. The Journal of Geology, 110: 611-618. doi: 10.1086/341762

    CrossRef Google Scholar

    [128] Zhou M F, Yan D P, Kennedy A K, et al. , 2002b. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51–67. doi: 10.1016/S0012-821X(01)00595-7

    CrossRef Google Scholar

    [129] Zhou M F, Yan D P, Wang C L, et al. , 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248: 286-300. doi: 10.1016/j.jpgl.2006.05.032

    CrossRef Google Scholar

    [130] Zhou G, Wu Y, Li L, et al. , 2018a. Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 314: 240–263. doi: 10.1016/j.precamres.2018.06.011

    CrossRef Google Scholar

    [131] Zhou G Y, Wu Y B, Zhang W X, et al. , 2019. Circa 900 Ma low δ18O A-type rhyolite in the northern Yangtze Block: Genesis and geological significance[J]. Precambrian Research, 324: 155–169. doi: 10.1016/j.precamres.2019.01.015

    CrossRef Google Scholar

    [132] Zhou J L, Li X H, Tang G Q, et al. , 2018b. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications[J]. Journal of Asian Earth Sciences, 151: 101-111. doi: 10.1016/j.jseaes.2017.10.029

    CrossRef Google Scholar

    [133] Zhou J L, Li X H, Tang G Q, et al. 2018. New evidence for a continental rift tectonic setting of the Neoproterozoic Imorona-Itsindro Suite (Central Madagascar)[J]. Precambrian Research, 306: 94 – 111.

    Google Scholar

    [134] Zhu Y, Lai S, Xie W, et al. , 2023. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: Petrological evidence of Nb-enriched basalts and arc-type intrusive rocks[J]. Gondwana Research, 122: 163-180. doi: 10.1016/j.gr.2023.05.024

    CrossRef Google Scholar

    [135] Zong K Q, Klemd R, Yuan Y, et al. , 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32–48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [136] 赖绍聪, 李永飞, 秦江锋, 2007. 碧口群西段董家河蛇绿岩地球化学及LA-ICP-MS锆石U-Pb定年[J]. 中国科学(D辑), 37(增刊): 262-270.

    Google Scholar

    [137] 秦克令, 何世平, 宋述光, 1992. 碧口地体同位素地质年代学及其意义[J]. 西北地质科学, 13(2): 97-110.

    Google Scholar

    [138] 王孝磊, 刘福来, 李军勇, 等, 2020. 前寒武纪俯冲和板块构造的渐进式演变[J]. 中国科学: 地球科学, 50(12): 1947-1968.

    Google Scholar

    [139] 张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造[J]. 中国科学(B辑), 25(9): 994 − 1003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(197) PDF downloads(167) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint