Citation: | HUANG Haoqing, YUAN Xingcheng, PENG Qinghua, GUO You, XUE Zhongkai, DAN Zeng, LI Jian, LIU Zhenfeng, BASANG Ciren, SUN Fei, YUAN Sheng. 2023. Geochemical characteristics and genetic mechanism of geothermal water and travertine in the southern Himalayas. Sedimentary Geology and Tethyan Geology, 43(2): 340-356. doi: 10.19826/j.cnki.1009-3850.2023.05004 |
The southern Himalayas is rich in geothermal resources. The study of the formation mechanism of geothermal water and travertine is helpful to understand the characteristics of geothermal resources and the information of paleoclimate change. It is of great theoretical significance to enrich the systematic study of geothermal resources in Shannan and the study of climatic and environmental changes in Qinghai-Tibet Plateau. In this study, three hot springs in Qiongduojiang, Gudui and Quzhuomu in Shannan area of eastern Himalayas are taken as the research objects. By collecting the data of hot spring geothermal water and travertine, the characteristics of geothermal water-rock interaction, the estimation of geothermal reservoir temperature of geothermal water, the traceability of geothermal water supply source, the genetic type and formation age of hot spring travertine and the climatic significance of travertine are comprehensively analyzed. The results show that the hydrochemical type of Qiongduojiang hot spring is HCO3·Cl-Na·Ca type; The hydrochemical type of Guduiriruo boiling spring is HCO3·SO4-Ca·Na type. The hydrochemical type of Guduichaka boiling spring is Cl-Na type; The hydrochemical type of Quzhuomu hot spring is Cl·SO4-Na·Ca. The source of anions and cations in hot spring geothermal water is mainly the dissolution of silicate rocks and the dissolution of some carbonate rocks and salt rocks. Since the hot spring geothermal water has not reached the water-rock equilibrium state, the shallow thermal reservoir temperature is 129~148°C by using the quartz geothermal temperature scale, and the deep thermal reservoir temperature and cold water mixing ratio are 181~221°C and 58%~65% by using the silicon-enthalpy diagram. Hydrogen and oxygen isotopes show that the geothermal water supply elevation is
[1] | Andreo B, Martín-Martín M, Martín-Algarra A, 1999. Hydrochemistry of spring water associated with travertines. Example of the Sierra de la Alfaguara (Granada, southern Spain)[J]. Comptes Rendus de l Académie des Sciences - Series IIA - Earth Planetary Science, 328(11): 745–750. |
[2] | Blasch K W, Bryson J R, 2007. Distinguishing sources of ground water recharge by using delta2H and delta18O[J]. Ground Water, 45(3): 294-308. doi: 10.1111/j.1745-6584.2006.00289.x |
[3] | Blum J D, Erel Y, Brown K, 1993. 87Sr/86Sr ratios of sierra nevada stream waters: Implications for relative mineral weathering rates[J]. Geochimicaet cosmochimicaacta, 57(21-22): 5019-5025. doi: 10.1016/S0016-7037(05)80014-6 |
[4] | 曹华文, 邹灏, 李光明, 等, 2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 42(2): 189 − 211 Cao H W, Li G M, Zhang L K, et al., 2022. Genesis of Himalayan leucogranite and its potentiality of rare−metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 42(2): 189 − 211(in Chinese with English abstract). |
[5] | Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 |
[6] | Craig H, 1963. The isotopic geochemistry of water and carbon in geothermal areas[J]. Nuclear Geological on Geothermal areas, 17 − 53. |
[7] | 董随亮, 张志, 张林奎, 等, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因[J]. 地球科学, 43(8): 2701-2714 Dong S L, Zhang Z, Zhang L K, et al. , 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet[J]. Earth sicence, 43(8): 2701-2714. |
[8] | 杜磊, 2021. 云南腾冲热水塘全新世热泉钙华沉积学与地球化学特征研究[D]: 成都理工大学. Du L, 2021. Study on the sedimentary and geochemical characteristics of the Holocene hot spring travertine in Tengchong hot water pond, Yunnan[D]: Chengdu university of technology. |
[9] | 杜磊, 文华国, 罗连超, 等2022. 陆地热泉钙华: 重建古气候历史信息重要载体[J]. 中国地质, 49(3): 802 − 821 Du Lei, Wen H G, Luo L C, et al., 2022. Terrestrial hot−Spring travertine: An important window into paleoclimate reconstruction [J]. Geology in China, 49(3): 802 − 821. |
[10] | Fan Y F, Pang Z H, Liao D W, et al., 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau[J]. Water, 11(8). |
[11] | Ford T D, Pedley H M, 1996. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 41(3-4): 117-175. doi: 10.1016/S0012-8252(96)00030-X |
[12] | Fournier R, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4 |
[13] | 付雷, 张森琦, 贾小丰, 等, 2019. 万年尺度下钙华的古环境重建检验——以青海冰凌山为例[J]. 第四纪研究, 39(2): 510-517 doi: 10.11928/j.issn.1001-7410.2019.02.22 Fu L, Zahng S Q, Jia X F, et al. , 2019. Test of the paleoenvironment reconstruction of Blingling Hill travertine in large time scale[J]. Quatrernary Sciences, 39(2): 510-517. doi: 10.11928/j.issn.1001-7410.2019.02.22 |
[14] | Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of waterand gas discharges from the Rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I |
[15] | Giggenbach W F, 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3 |
[16] | 顾慰祖, 2011. 同位素水文学[M]. 北京: 科学出版社. Gu W Z, 2011. Isotope hydrology [M]. Beijing: Science Press(in Chinese). |
[17] | Guo Q, Pang Z H, Wang Y C, et al. , 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007 |
[18] | Guo Q H, Planer-Friedrich B, Liu M L, et al. , 2019. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008 |
[19] | Guynn J H, Kapp P, Pullen A, et al. , 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505-508. doi: 10.1130/G22453.1 |
[20] | Hamzah Z, Aris A Z, Ramli M F, et al. , 2017. Groundwater quality assessment using integrated geochemical methods, multivariate statistical analysis, and geostatistical technique in shallow coastal aquifer of Terengganu, Malaysia[J]. Arabian Journal of Geosciences, 10(2): 49. doi: 10.1007/s12517-016-2828-5 |
[21] | Han G L, Liu C Q, 2006. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China[J]. Science of The Total Environment, 364(1-3): 165-74. doi: 10.1016/j.scitotenv.2005.06.025 |
[22] | 亨德森 P, 1989. 稀土元素地球化学[M]. 北京: 地质出版社. Henderson P, 1989. Rare Earth Element Geochemistry[M]. Beijing: Geological Publishing House. |
[23] | 胡立堂, 2014. 黑河干流中游地区地表水和地下水集成模拟与应用[J]. 北京师范大学学报(自然科学版), 50(5): 563-569 Hu L T, 2014. Integrated simulation and application of surface water and groundwater in the middle reaches of Heihe River [J]. Journal of Beijing Normal University ( Natural Science Edition ), 50(5): 563-569. |
[24] | Karimi S, Mohammadi Z, Samani N, 2017. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran. [J]. Environmental Earth Sciences, 76(19): 1-24. |
[25] | Kong Y l, Wang K, Li J, et al. , 2019. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources[J]. Water, 11(6): 1239. doi: 10.3390/w11061239 |
[26] | Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500 |
[27] | 廖志杰, 1999. 滇藏地热带[M]: 滇藏地热带. Liao Z J, 1999. Yunnan−Tibet tropical [M] : Yunnan−Tibet tropical. |
[28] | 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统[M]: 滇藏地热带: 地热资源和典型地热系统. Liao Z J, Zhao P, 1999. Tropical Yunnan−Tibet : geothermal resources and typical geothermal systems [M] : Tropical Yunnan−Tibet : geothermal resources and typical geothermal systems. |
[29] | 刘海生, 周训, 张彧齐, 等, 2020. 温泉钙华沉积的影响因素[J]. 中国岩溶, 39(1): 6 Liu H S, Zhou X, Zhang Y Q, et al. , 2020. Influencing factors of travertine deposition in hot springs [J]. Chinese karst, 39(1): 6. |
[30] | Liu M L, Guo Q H, Wu G, et al. , 2019. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009 |
[31] | Liu P, Hoth N, Drebenstedt C, et al. , 2017. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches[J]. Science of The Total Environment, 601-602: 1-14. doi: 10.1016/j.scitotenv.2017.05.146 |
[32] | Liu W, Guan L F, Liu Y, et al. , 2022. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 607: 127554. doi: 10.1016/j.jhydrol.2022.127554 |
[33] | 刘再华, 袁道先, 何师意, 等, 2000. 地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源——以四川黄龙沟, 康定和云南中甸下给为例[J]. 中国科学: D辑, 30(2): 209-214 Liu Z H, Yuan D X, He S Y, et al. , 2000. Geochemical characteristics of geothermal CO2-water-carbonate system and its CO2 source: a case study of Huanglonggou, Kangding, Sichuan and Xiaji, Zhongdian, Yunnan [J]. Chinese Science: D, 30(2): 209-214. |
[34] | Marandi A, Shand P, 2018. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009 |
[35] | 蒙晖仁, 曹锐, 陈德凡, 等, 2023. 西藏古堆地热田水热蚀变类型、分布特征及对勘探方向的启示[J]. 地球学报, 44(01): 158-168 Meng H R, Cao R, Cheng D F, et al. , 2023. Types, Distribution Characteristics, and Exploration Direction of Hydrothermal Alteration in Gudui Geothermal Field, Tibet[J]. Acta Geoscientica Sinica, 44(01): 158-168. |
[36] | 牛新生, 郑棉平, 刘喜方, 等, 2017. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 35(6): 59-64 Niu X S, Zheng M P, Liu X F, et al. , 2017. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 35(6): 59-64. |
[37] | Palmer M R, Edmond J M, 1989. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 92(1): 11-26. doi: 10.1016/0012-821X(89)90017-4 |
[38] | Palmer M R, Edmond, J M, 1992. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta, 56(5): 2099-2111. doi: 10.1016/0016-7037(92)90332-D |
[39] | Pan G F, Li X Q, Zhang J, et al. , 2018. Groundwater-flow-system characterization with hydrogeochemistry: a case in the lakes discharge area of the Ordos Plateau, China[J]. Hydrogeology Journal, 27(2): 669-683. |
[40] | Pentecost A, 1995. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 14(10): 1005-1028. doi: 10.1016/0277-3791(95)00101-8 |
[41] | Peralta Arnold Y, Cabassi J, Tassi F, et al. , 2017. Fluid geochemistry of a deep-seated geothermal resource in the Puna plateau (Jujuy Province, Argentina)[J]. Journal of Volcanology and Geothermal Research, 338: 121-134. doi: 10.1016/j.jvolgeores.2017.03.030 |
[42] | Piper A M, 1944. A graphic procedure in the geochemical interpretation of water‐analyses[J]. Transactions-American Geophysical Union, 25(6): 914-923. doi: 10.1029/TR025i006p00914 |
[43] | Pu J B, Yuan D X, Zhang C, et al. , 2012. Identifying the sources of solutes in karst groundwater in Chongqing China: a combined sulfate and strontium isotope approach[J]. Acta Geologica Sinica (English Edition), 86(4): 980-992. doi: 10.1111/j.1755-6724.2012.00722.x |
[44] | R. Zentmyer, Myrow P M, Newell D L, 2008. Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet[J]. Geological Magazine, 145(6): 753-765. doi: 10.1017/S0016756808005323 |
[45] | Singh C K, Kumar A, Shashtri S, et al. , 2017. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India[J]. Journal of Geochemical Exploration, 175: 59-71. doi: 10.1016/j.gexplo.2017.01.001 |
[46] | Sun, McDonough, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-314. doi: 10.1144/GSL.SP.1989.042.01.19 |
[47] | 孙东, 王道永, 2011. 雅鲁藏布江缝合带中段构造特征及成因模式新见解[J]. 地质学报, 85(1): 56-65 Sun D, Wang D Y, 2011. New insights into the structural characteristics and genetic model of the middle section of the Yarlung Zangbo suture zone [J]. Journal of Geology, 85 (1): 56-65. |
[48] | 孙岐发, 贾林刚, 田辉, 等, 2020. 长春莲花山地区地下水化学特征及成因分析[J]. 地质与资源, 29(5): 476 − 482 Sun Q F, Jia L G, Tian H, et al. , 2020. Chemical characteristics and genesis analysis of groundwater in Lianhuashan area of Changchun[J]. Geology and Resources 29(5): 476 − 482. |
[49] | Ta M M, Zhou X, Guo J, et al. , 2019. Hydrogeochemical characteristics and formation of the hot springs occurring in the plunging ends of an anticline in Chongqing, Eastern Sichuan Basin, China[J]. Environmental Earth Sciences, 78(15): 468. doi: 10.1007/s12665-019-8486-7 |
[50] | Tan H B, Su J B, Xu P, et al. , 2018. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau: Constraints from geochemical experimental data[J]. Applied Geochemistry, 93: 60-68. doi: 10.1016/j.apgeochem.2018.04.001 |
[51] | Tan H B, Zhang Y F, Zhang W J, et al. , 2014. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51(1): 23-32. |
[52] | Truesdell A, Fournier R, 1977. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. J. Res. U. S. Geol. Surv, 5(1): 49-52. |
[53] | Wang C G, Zheng M P, 2019. Hydrochemical Characteristics and Evolution of Hot Fluids in the Gudui Geothermal Field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010 |
[54] | Wang C G, Zheng M P, Zhang X F, et al. , 2020. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 11(4): 1175-1187. doi: 10.1016/j.gsf.2019.09.013 |
[55] | Wang E, Burchfiel B C, Royden L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of Southwestern Sichuan and Central Yunnan, China[J]. Special Paper of the Geological Society of America, 327: 1-108. |
[56] | 王鹏, 陈晓宏, 沈立成, 等, 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 43(4): 1429-1438 doi: 10.12029/gc20160426 Wang P, Chen X H, Shen L C, et al. , 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 43(4): 1429-1438 doi: 10.12029/gc20160426 |
[57] | 汪智军, 殷建军, 袁道先, 2018. 钙华在第四纪研究中的应用: 以青藏高原为例[J]. 科学通报, 63(11): 1012-1023 Wang Z J, Yin J J, Yuan D X, 2018. The application of travertine in Quaternary research: taking the Qinghai-Tibet Plateau as an example [J]. Scientific Notification, 63 (11): 1012-1023. |
[58] | 王思琪, 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]: 中国地质大学(北京). Wang S Q, 2017. Hydrogeochemical Processes and Genesis Machenism of High−temperature Geothermal System in Gudui, Tibet[D]: China University of Geosciences( Beijing ). |
[59] | Wang X, Wang G L, Lu C, et al. , 2018. Evolution of deep parent fluids of geothermal fields in the Nimu–Nagchu geothermal belt, Tibet, China[J]. Geothermics, 71: 118-131. doi: 10.1016/j.geothermics.2017.07.010 |
[60] | Wang Y, Yuan X, Zhang Y H, et al. , 2023. Hydrochemical, D–O–Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area, SW China: Insights into genetic mechanism and scaling potential[J]. Ore Geology Reviews, 158: 105486. |
[61] | Wang Z L, Zhang J, Liu C Q, 2007. Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River[J]. Chemosphere, 69(7): 1081-1088. doi: 10.1016/j.chemosphere.2007.04.031 |
[62] | 韦梅华, 2012. 四川省康定县地下热水结垢机理及趋势分析[D]: 中国地质大学(北京). Wei M H, 2012. Analysis of the scaling Mechanism and Trend of Thermal Groundwater in Kangding County of Sichuan Province[D]. China University of Geosciences(Beijing). |
[63] | Xu S, Guan L F, Zhang M L, et al. , 2022. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 65(1): 139-155. doi: 10.1007/s11430-021-9810-x |
[64] | 严宇鹏, 牛凤霞, 刘佳, 等, 2022. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 42(2): 815-825 Yan Y P, Niu F X, Liu J, et al. , 2022. Hydrochemical characteristics and source analysis of the upper reaches of the Yarlung Zangbo River in summer [J]. Chinese Environmental Science, 42(2): 815-825. |
[65] | Yeh H F, Lee C H, Hsu K C, 2011. Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: a case study from the Chih-Pen Creek basin, Taiwan[J]. Environmental Earth Sciences, 62(2): 393-402. doi: 10.1007/s12665-010-0534-2 |
[66] | 余石勇, 2022. 西藏麻米错盐湖锂矿水化学与钙华年代学和地球化学特征[D]: 中国地质科学院. Yu S Y, 2022. Hydrochemistry, travertine chronology and geochemical characteristics of lithium deposits in Mam Co Salt Lake, Tibet [D] : Chinese Academy of Geological Sciences. |
[67] | Yu J S, Zhang H B, Yu F J, et al. , 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Chinese Journal of Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285 |
[68] | Yu X, Yuan X C, Guo H Y, et al. , 2022. Coupling Hydrochemistry and Stable Isotopes (δ2H, δ18O and 87Sr/86Sr) to Identify the Major Factors Affecting the Hydrochemical Process of Groundwater and Surface Water in the Lower Reaches of the Yarlung-Zangbo River, Southern Tibet, Southwestern China[J]. Water, 14(23): 3906. doi: 10.3390/w14233906 |
[69] | 袁兴成, 张云辉, 王鹰, 等, 2023. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005 Yuan X C, Zhang Y H, Wang Y, et al. , 2023. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005 |
[70] | Zhang W J, Tan H B, Zhang Y F, et al. , 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation. [J]. Applied Geochemistry, 63: 436-445. doi: 10.1016/j.apgeochem.2015.10.006 |
[71] | 章旭, 郝红兵, 刘康林, 等, 2019. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质, 46(04): 1-9 doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01 Zhang X, Hao H B, Liu K L, et al. , 2019. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeological Engineering Geology, 46 ( 04 ): 1-9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01 |
[72] | 章旭, 郝红兵, 刘康林, 等, 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制[J]. 中国地质, 47(6): 1702-1714 doi: 10.12029/gc20200608 Zhang X, Hao H B, Liu K L, et al. , 2020. Hydrogeochemical characteristics and genetic model of Oiga Graben Geothermal Waters System in Tibet[J]. Geology in China, 47(6): 1702-1714. doi: 10.12029/gc20200608 |
[73] | 章旭, 张文, 吕国森, 等, 2023. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据[J]. 沉积与特提斯地质, 43(2): 1-16 Zhang X, Zhang W, Lü G S, et al. , 2023. Geochemical, Geophysical Genesis of the Ranggu GeothermalSpring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration[J]. Sedimentary Geology and Tethyan Geology, 43(2): 1-16. |
[74] | Zhang X B, Li X, Gao X B, 2016. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 23(7): 6286-6299. doi: 10.1007/s11356-015-5838-z |
[75] | Zhang Y H, Dai Y S, Wang Y, et al. , 2021a. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of The Total Environment, 784: 147186. doi: 10.1016/j.scitotenv.2021.147186 |
[76] | Zhang Y H, He Z H, Tian H H, et al. , 2021b. Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China[J]. Environmental Earth Sciences, 80(17): 576. doi: 10.1007/s12665-021-09894-y |
[77] | Zhang Y H, Li X, Luo M, et al. , 2021c. Hydrochemistry and Entropy-Based Groundwater Quality Assessment in the Suining Area, Southwestern China[J]. Journal of Chemistry, 2021: 5591892. |
[78] | Zhang Y H, Xu M, Li X, et al. , 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China[J]. Water, 10(1): 80-96. doi: 10.3390/w10010080 |
[79] | 张云辉, 李晓, 许模, 等, 2021. 鲜水河地热带道孚地区地热水水文地球化学特征研究[J]. 安全与环境工程, 28(3): 42-51 doi: 10.13578/j.cnki.issn.1671-1556.20201201 Zhang Y H, Li X, Xu M, et al, 2021b. Hydrogeochemical Characteristics of Geothermal Waters in the Daofu Area of the Xianshuihe Geothermal Belt[J]. Safety and Environmental Engineering, 28(03): 42-51. doi: 10.13578/j.cnki.issn.1671-1556.20201201 |
[80] | 赵平, 多吉, 谢鄂军, 等, 2003. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报. 19(3): 569 − 576 Zhao P, Duo J, Xie E J, et al., 2003. Strontium isotope data for thermal waters in selected high−temperature geothermal fields, China. Acta Petrologica Sinica. 19(3): 569 − 576. |
[81] | 赵元艺, 崔玉斌, 赵希涛. 2010. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 29(1): 124 − 141 Zhao Y Y, Cui Y B, Zhao X T, 2010. Geological and geochemical features and significance of travertine in travertine−island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 29(1): 124 − 141 |
[82] | Zheng M P, 1989. A new type of cesium ore in Tibet[M]. Beijing:Geological Publishing House. |
[83] | 周鹏, 孙明露, 张云辉, 等, 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究[J]. 沉积与特提斯地质, 43(2): 1-19 Zhou P, Sun M L, Zhang Y H, et al. , 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet[J]. Sedimentary Geology and Tethyan Geology, 43(2): 1-19. |
[84] | Zhu D C, Zhao Z D, Niu Y, et al. , 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002 |
(a) Study area location map(a) (modified from Wang et al., 2016) and geological map and sampling point distribution map(b)
Schöller diagram of main hydrochemical parameters of geothermal waters in the study area
Piper triangle diagram of geothermal waters in the study area
(a) Change trend of major elements of hot spring travertine in the study area(a)and Chondrite-normalized REE spider diagrams (b) (chondritenormalized data after Sun and McDonough, 1989)
Gibbs diagram of geothermal waters in the study area
Molar ratio diagrams of ion combination (a. Na++K+ vs. Cl−; b. Ca2++Mg2+vs. HCO3-+ SO42-; c. Ca2+ vs. HCO3-; d. Ca2++Mg2+ vs. HCO3-; e. Ca2+ vs SO42-; f. Ca2+ vs Mg2+)
Ion combination ratio diagram of ion exchange
Sr vs. 87Sr/86Sr of geothermal water in the study area
Saturation indices diagram of main minerals in geothermal waters in the study area
Na-K-Mg trilinear equilibrium diagram of the geothermal waters in the study area
The lg (K2/Mg)/lg (SiO2) ratio plots(a) and (b) silicon-enthalpy model diagrams of the geothermal waters in the study area(surface water data reference after Wang, 2017)
Plots of δD-δ18O for the geothermal waters in the study area
Plot of δ18O-δ13C for the geothermal waters in the study area
The relationship between Mg / Ca ratio and test age of travertine samples in the study area(a) and the relationship between δ13C and test age of travertine samples(b)