2023 Vol. 43, No. 2
Article Contents

HUANG Haoqing, YUAN Xingcheng, PENG Qinghua, GUO You, XUE Zhongkai, DAN Zeng, LI Jian, LIU Zhenfeng, BASANG Ciren, SUN Fei, YUAN Sheng. 2023. Geochemical characteristics and genetic mechanism of geothermal water and travertine in the southern Himalayas. Sedimentary Geology and Tethyan Geology, 43(2): 340-356. doi: 10.19826/j.cnki.1009-3850.2023.05004
Citation: HUANG Haoqing, YUAN Xingcheng, PENG Qinghua, GUO You, XUE Zhongkai, DAN Zeng, LI Jian, LIU Zhenfeng, BASANG Ciren, SUN Fei, YUAN Sheng. 2023. Geochemical characteristics and genetic mechanism of geothermal water and travertine in the southern Himalayas. Sedimentary Geology and Tethyan Geology, 43(2): 340-356. doi: 10.19826/j.cnki.1009-3850.2023.05004

Geochemical characteristics and genetic mechanism of geothermal water and travertine in the southern Himalayas

More Information
  • The southern Himalayas is rich in geothermal resources. The study of the formation mechanism of geothermal water and travertine is helpful to understand the characteristics of geothermal resources and the information of paleoclimate change. It is of great theoretical significance to enrich the systematic study of geothermal resources in Shannan and the study of climatic and environmental changes in Qinghai-Tibet Plateau. In this study, three hot springs in Qiongduojiang, Gudui and Quzhuomu in Shannan area of eastern Himalayas are taken as the research objects. By collecting the data of hot spring geothermal water and travertine, the characteristics of geothermal water-rock interaction, the estimation of geothermal reservoir temperature of geothermal water, the traceability of geothermal water supply source, the genetic type and formation age of hot spring travertine and the climatic significance of travertine are comprehensively analyzed. The results show that the hydrochemical type of Qiongduojiang hot spring is HCO3·Cl-Na·Ca type; The hydrochemical type of Guduiriruo boiling spring is HCO3·SO4-Ca·Na type. The hydrochemical type of Guduichaka boiling spring is Cl-Na type; The hydrochemical type of Quzhuomu hot spring is Cl·SO4-Na·Ca. The source of anions and cations in hot spring geothermal water is mainly the dissolution of silicate rocks and the dissolution of some carbonate rocks and salt rocks. Since the hot spring geothermal water has not reached the water-rock equilibrium state, the shallow thermal reservoir temperature is 129~148°C by using the quartz geothermal temperature scale, and the deep thermal reservoir temperature and cold water mixing ratio are 181~221°C and 58%~65% by using the silicon-enthalpy diagram. Hydrogen and oxygen isotopes show that the geothermal water supply elevation is 44675303 m. In Shannan area, geothermal water is recharged by high-altitude atmospheric precipitation and ice and snow melt water. It migrates to the deep through the main fault structure to heat and rises along the fissures and joints under high temperature and high pressure. Then it is mixed with shallow cold water, and finally exposed along the shallow surface loose fracture zone to form a hot spring. Hot spring travertine CaO accounts for 43.43%~56.66%, and shows the characteristics of light rare earth element enrichment; the δ13C indicates that the hot spring travertine is thermogenic, and the carbon in travertine is mainly derived from the metamorphic origin of deep carbonate rocks, and only part of mantle carbon is found in Guduiriruo boiling spring; 14C dating shows that the age of travertine is 21280±70~>43500 years, the ratios of Mg/Ca and Mg/Sr indicate that the rainfall decreased rapidly from the peak in 43.50 ka, and gradually increased from 42 ka to 21.28 ka.

  • 加载中
  • [1] Andreo B, Martín-Martín M, Martín-Algarra A, 1999. Hydrochemistry of spring water associated with travertines. Example of the Sierra de la Alfaguara (Granada, southern Spain)[J]. Comptes Rendus de l Académie des Sciences - Series IIA - Earth Planetary Science, 328(11): 745–750.

    Google Scholar

    [2] Blasch K W, Bryson J R, 2007. Distinguishing sources of ground water recharge by using delta2H and delta18O[J]. Ground Water, 45(3): 294-308. doi: 10.1111/j.1745-6584.2006.00289.x

    CrossRef Google Scholar

    [3] Blum J D, Erel Y, Brown K, 1993. 87Sr/86Sr ratios of sierra nevada stream waters: Implications for relative mineral weathering rates[J]. Geochimicaet cosmochimicaacta, 57(21-22): 5019-5025. doi: 10.1016/S0016-7037(05)80014-6

    CrossRef Google Scholar

    [4] 曹华文, 邹灏, 李光明, 等, 2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 42(2): 189 − 211

    Google Scholar

    Cao H W, Li G M, Zhang L K, et al., 2022. Genesis of Himalayan leucogranite and its potentiality of rare−metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 42(2): 189 − 211(in Chinese with English abstract).

    Google Scholar

    [5] Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [6] Craig H, 1963. The isotopic geochemistry of water and carbon in geothermal areas[J]. Nuclear Geological on Geothermal areas, 17 − 53.

    Google Scholar

    [7] 董随亮, 张志, 张林奎, 等, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因[J]. 地球科学, 43(8): 2701-2714

    Google Scholar

    Dong S L, Zhang Z, Zhang L K, et al. , 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet[J]. Earth sicence, 43(8): 2701-2714.

    Google Scholar

    [8] 杜磊, 2021. 云南腾冲热水塘全新世热泉钙华沉积学与地球化学特征研究[D]: 成都理工大学.

    Google Scholar

    Du L, 2021. Study on the sedimentary and geochemical characteristics of the Holocene hot spring travertine in Tengchong hot water pond, Yunnan[D]: Chengdu university of technology.

    Google Scholar

    [9] 杜磊, 文华国, 罗连超, 等2022. 陆地热泉钙华: 重建古气候历史信息重要载体[J]. 中国地质, 49(3): 802 − 821

    Google Scholar

    Du Lei, Wen H G, Luo L C, et al., 2022. Terrestrial hot−Spring travertine: An important window into paleoclimate reconstruction [J]. Geology in China, 49(3): 802 − 821.

    Google Scholar

    [10] Fan Y F, Pang Z H, Liao D W, et al., 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau[J]. Water, 11(8).

    Google Scholar

    [11] Ford T D, Pedley H M, 1996. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 41(3-4): 117-175. doi: 10.1016/S0012-8252(96)00030-X

    CrossRef Google Scholar

    [12] Fournier R, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [13] 付雷, 张森琦, 贾小丰, 等, 2019. 万年尺度下钙华的古环境重建检验——以青海冰凌山为例[J]. 第四纪研究, 39(2): 510-517 doi: 10.11928/j.issn.1001-7410.2019.02.22

    CrossRef Google Scholar

    Fu L, Zahng S Q, Jia X F, et al. , 2019. Test of the paleoenvironment reconstruction of Blingling Hill travertine in large time scale[J]. Quatrernary Sciences, 39(2): 510-517. doi: 10.11928/j.issn.1001-7410.2019.02.22

    CrossRef Google Scholar

    [14] Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of waterand gas discharges from the Rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    CrossRef Google Scholar

    [15] Giggenbach W F, 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [16] 顾慰祖, 2011. 同位素水文学[M]. 北京: 科学出版社.

    Google Scholar

    Gu W Z, 2011. Isotope hydrology [M]. Beijing: Science Press(in Chinese).

    Google Scholar

    [17] Guo Q, Pang Z H, Wang Y C, et al. , 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [18] Guo Q H, Planer-Friedrich B, Liu M L, et al. , 2019. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008

    CrossRef Google Scholar

    [19] Guynn J H, Kapp P, Pullen A, et al. , 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505-508. doi: 10.1130/G22453.1

    CrossRef Google Scholar

    [20] Hamzah Z, Aris A Z, Ramli M F, et al. , 2017. Groundwater quality assessment using integrated geochemical methods, multivariate statistical analysis, and geostatistical technique in shallow coastal aquifer of Terengganu, Malaysia[J]. Arabian Journal of Geosciences, 10(2): 49. doi: 10.1007/s12517-016-2828-5

    CrossRef Google Scholar

    [21] Han G L, Liu C Q, 2006. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China[J]. Science of The Total Environment, 364(1-3): 165-74. doi: 10.1016/j.scitotenv.2005.06.025

    CrossRef Google Scholar

    [22] 亨德森 P, 1989. 稀土元素地球化学[M]. 北京: 地质出版社.

    Google Scholar

    Henderson P, 1989. Rare Earth Element Geochemistry[M]. Beijing: Geological Publishing House.

    Google Scholar

    [23] 胡立堂, 2014. 黑河干流中游地区地表水和地下水集成模拟与应用[J]. 北京师范大学学报(自然科学版), 50(5): 563-569

    Google Scholar

    Hu L T, 2014. Integrated simulation and application of surface water and groundwater in the middle reaches of Heihe River [J]. Journal of Beijing Normal University ( Natural Science Edition ), 50(5): 563-569.

    Google Scholar

    [24] Karimi S, Mohammadi Z, Samani N, 2017. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran. [J]. Environmental Earth Sciences, 76(19): 1-24.

    Google Scholar

    [25] Kong Y l, Wang K, Li J, et al. , 2019. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources[J]. Water, 11(6): 1239. doi: 10.3390/w11061239

    CrossRef Google Scholar

    [26] Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    CrossRef Google Scholar

    [27] 廖志杰, 1999. 滇藏地热带[M]: 滇藏地热带.

    Google Scholar

    Liao Z J, 1999. Yunnan−Tibet tropical [M] : Yunnan−Tibet tropical.

    Google Scholar

    [28] 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统[M]: 滇藏地热带: 地热资源和典型地热系统.

    Google Scholar

    Liao Z J, Zhao P, 1999. Tropical Yunnan−Tibet : geothermal resources and typical geothermal systems [M] : Tropical Yunnan−Tibet : geothermal resources and typical geothermal systems.

    Google Scholar

    [29] 刘海生, 周训, 张彧齐, 等, 2020. 温泉钙华沉积的影响因素[J]. 中国岩溶, 39(1): 6

    Google Scholar

    Liu H S, Zhou X, Zhang Y Q, et al. , 2020. Influencing factors of travertine deposition in hot springs [J]. Chinese karst, 39(1): 6.

    Google Scholar

    [30] Liu M L, Guo Q H, Wu G, et al. , 2019. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009

    CrossRef Google Scholar

    [31] Liu P, Hoth N, Drebenstedt C, et al. , 2017. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches[J]. Science of The Total Environment, 601-602: 1-14. doi: 10.1016/j.scitotenv.2017.05.146

    CrossRef Google Scholar

    [32] Liu W, Guan L F, Liu Y, et al. , 2022. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 607: 127554. doi: 10.1016/j.jhydrol.2022.127554

    CrossRef Google Scholar

    [33] 刘再华, 袁道先, 何师意, 等, 2000. 地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源——以四川黄龙沟, 康定和云南中甸下给为例[J]. 中国科学: D辑, 30(2): 209-214

    Google Scholar

    Liu Z H, Yuan D X, He S Y, et al. , 2000. Geochemical characteristics of geothermal CO2-water-carbonate system and its CO2 source: a case study of Huanglonggou, Kangding, Sichuan and Xiaji, Zhongdian, Yunnan [J]. Chinese Science: D, 30(2): 209-214.

    Google Scholar

    [34] Marandi A, Shand P, 2018. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009

    CrossRef Google Scholar

    [35] 蒙晖仁, 曹锐, 陈德凡, 等, 2023. 西藏古堆地热田水热蚀变类型、分布特征及对勘探方向的启示[J]. 地球学报, 44(01): 158-168

    Google Scholar

    Meng H R, Cao R, Cheng D F, et al. , 2023. Types, Distribution Characteristics, and Exploration Direction of Hydrothermal Alteration in Gudui Geothermal Field, Tibet[J]. Acta Geoscientica Sinica, 44(01): 158-168.

    Google Scholar

    [36] 牛新生, 郑棉平, 刘喜方, 等, 2017. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 35(6): 59-64

    Google Scholar

    Niu X S, Zheng M P, Liu X F, et al. , 2017. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 35(6): 59-64.

    Google Scholar

    [37] Palmer M R, Edmond J M, 1989. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 92(1): 11-26. doi: 10.1016/0012-821X(89)90017-4

    CrossRef Google Scholar

    [38] Palmer M R, Edmond, J M, 1992. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta, 56(5): 2099-2111. doi: 10.1016/0016-7037(92)90332-D

    CrossRef Google Scholar

    [39] Pan G F, Li X Q, Zhang J, et al. , 2018. Groundwater-flow-system characterization with hydrogeochemistry: a case in the lakes discharge area of the Ordos Plateau, China[J]. Hydrogeology Journal, 27(2): 669-683.

    Google Scholar

    [40] Pentecost A, 1995. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 14(10): 1005-1028. doi: 10.1016/0277-3791(95)00101-8

    CrossRef Google Scholar

    [41] Peralta Arnold Y, Cabassi J, Tassi F, et al. , 2017. Fluid geochemistry of a deep-seated geothermal resource in the Puna plateau (Jujuy Province, Argentina)[J]. Journal of Volcanology and Geothermal Research, 338: 121-134. doi: 10.1016/j.jvolgeores.2017.03.030

    CrossRef Google Scholar

    [42] Piper A M, 1944. A graphic procedure in the geochemical interpretation of water‐analyses[J]. Transactions-American Geophysical Union, 25(6): 914-923. doi: 10.1029/TR025i006p00914

    CrossRef Google Scholar

    [43] Pu J B, Yuan D X, Zhang C, et al. , 2012. Identifying the sources of solutes in karst groundwater in Chongqing China: a combined sulfate and strontium isotope approach[J]. Acta Geologica Sinica (English Edition), 86(4): 980-992. doi: 10.1111/j.1755-6724.2012.00722.x

    CrossRef Google Scholar

    [44] R. Zentmyer, Myrow P M, Newell D L, 2008. Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet[J]. Geological Magazine, 145(6): 753-765. doi: 10.1017/S0016756808005323

    CrossRef Google Scholar

    [45] Singh C K, Kumar A, Shashtri S, et al. , 2017. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India[J]. Journal of Geochemical Exploration, 175: 59-71. doi: 10.1016/j.gexplo.2017.01.001

    CrossRef Google Scholar

    [46] Sun, McDonough, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-314. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [47] 孙东, 王道永, 2011. 雅鲁藏布江缝合带中段构造特征及成因模式新见解[J]. 地质学报, 85(1): 56-65

    Google Scholar

    Sun D, Wang D Y, 2011. New insights into the structural characteristics and genetic model of the middle section of the Yarlung Zangbo suture zone [J]. Journal of Geology, 85 (1): 56-65.

    Google Scholar

    [48] 孙岐发, 贾林刚, 田辉, 等, 2020. 长春莲花山地区地下水化学特征及成因分析[J]. 地质与资源, 29(5): 476 − 482

    Google Scholar

    Sun Q F, Jia L G, Tian H, et al. , 2020. Chemical characteristics and genesis analysis of groundwater in Lianhuashan area of Changchun[J]. Geology and Resources 29(5): 476 − 482.

    Google Scholar

    [49] Ta M M, Zhou X, Guo J, et al. , 2019. Hydrogeochemical characteristics and formation of the hot springs occurring in the plunging ends of an anticline in Chongqing, Eastern Sichuan Basin, China[J]. Environmental Earth Sciences, 78(15): 468. doi: 10.1007/s12665-019-8486-7

    CrossRef Google Scholar

    [50] Tan H B, Su J B, Xu P, et al. , 2018. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau: Constraints from geochemical experimental data[J]. Applied Geochemistry, 93: 60-68. doi: 10.1016/j.apgeochem.2018.04.001

    CrossRef Google Scholar

    [51] Tan H B, Zhang Y F, Zhang W J, et al. , 2014. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51(1): 23-32.

    Google Scholar

    [52] Truesdell A, Fournier R, 1977. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. J. Res. U. S. Geol. Surv, 5(1): 49-52.

    Google Scholar

    [53] Wang C G, Zheng M P, 2019. Hydrochemical Characteristics and Evolution of Hot Fluids in the Gudui Geothermal Field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010

    CrossRef Google Scholar

    [54] Wang C G, Zheng M P, Zhang X F, et al. , 2020. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 11(4): 1175-1187. doi: 10.1016/j.gsf.2019.09.013

    CrossRef Google Scholar

    [55] Wang E, Burchfiel B C, Royden L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of Southwestern Sichuan and Central Yunnan, China[J]. Special Paper of the Geological Society of America, 327: 1-108.

    Google Scholar

    [56] 王鹏, 陈晓宏, 沈立成, 等, 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 43(4): 1429-1438 doi: 10.12029/gc20160426

    CrossRef Google Scholar

    Wang P, Chen X H, Shen L C, et al. , 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 43(4): 1429-1438 doi: 10.12029/gc20160426

    CrossRef Google Scholar

    [57] 汪智军, 殷建军, 袁道先, 2018. 钙华在第四纪研究中的应用: 以青藏高原为例[J]. 科学通报, 63(11): 1012-1023

    Google Scholar

    Wang Z J, Yin J J, Yuan D X, 2018. The application of travertine in Quaternary research: taking the Qinghai-Tibet Plateau as an example [J]. Scientific Notification, 63 (11): 1012-1023.

    Google Scholar

    [58] 王思琪, 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]: 中国地质大学(北京).

    Google Scholar

    Wang S Q, 2017. Hydrogeochemical Processes and Genesis Machenism of High−temperature Geothermal System in Gudui, Tibet[D]: China University of Geosciences( Beijing ).

    Google Scholar

    [59] Wang X, Wang G L, Lu C, et al. , 2018. Evolution of deep parent fluids of geothermal fields in the Nimu–Nagchu geothermal belt, Tibet, China[J]. Geothermics, 71: 118-131. doi: 10.1016/j.geothermics.2017.07.010

    CrossRef Google Scholar

    [60] Wang Y, Yuan X, Zhang Y H, et al. , 2023. Hydrochemical, D–O–Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area, SW China: Insights into genetic mechanism and scaling potential[J]. Ore Geology Reviews, 158: 105486.

    Google Scholar

    [61] Wang Z L, Zhang J, Liu C Q, 2007. Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River[J]. Chemosphere, 69(7): 1081-1088. doi: 10.1016/j.chemosphere.2007.04.031

    CrossRef Google Scholar

    [62] 韦梅华, 2012. 四川省康定县地下热水结垢机理及趋势分析[D]: 中国地质大学(北京).

    Google Scholar

    Wei M H, 2012. Analysis of the scaling Mechanism and Trend of Thermal Groundwater in Kangding County of Sichuan Province[D]. China University of Geosciences(Beijing).

    Google Scholar

    [63] Xu S, Guan L F, Zhang M L, et al. , 2022. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 65(1): 139-155. doi: 10.1007/s11430-021-9810-x

    CrossRef Google Scholar

    [64] 严宇鹏, 牛凤霞, 刘佳, 等, 2022. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 42(2): 815-825

    Google Scholar

    Yan Y P, Niu F X, Liu J, et al. , 2022. Hydrochemical characteristics and source analysis of the upper reaches of the Yarlung Zangbo River in summer [J]. Chinese Environmental Science, 42(2): 815-825.

    Google Scholar

    [65] Yeh H F, Lee C H, Hsu K C, 2011. Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: a case study from the Chih-Pen Creek basin, Taiwan[J]. Environmental Earth Sciences, 62(2): 393-402. doi: 10.1007/s12665-010-0534-2

    CrossRef Google Scholar

    [66] 余石勇, 2022. 西藏麻米错盐湖锂矿水化学与钙华年代学和地球化学特征[D]: 中国地质科学院.

    Google Scholar

    Yu S Y, 2022. Hydrochemistry, travertine chronology and geochemical characteristics of lithium deposits in Mam Co Salt Lake, Tibet [D] : Chinese Academy of Geological Sciences.

    Google Scholar

    [67] Yu J S, Zhang H B, Yu F J, et al. , 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Chinese Journal of Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285

    CrossRef Google Scholar

    [68] Yu X, Yuan X C, Guo H Y, et al. , 2022. Coupling Hydrochemistry and Stable Isotopes (δ2H, δ18O and 87Sr/86Sr) to Identify the Major Factors Affecting the Hydrochemical Process of Groundwater and Surface Water in the Lower Reaches of the Yarlung-Zangbo River, Southern Tibet, Southwestern China[J]. Water, 14(23): 3906. doi: 10.3390/w14233906

    CrossRef Google Scholar

    [69] 袁兴成, 张云辉, 王鹰, 等, 2023. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005

    CrossRef Google Scholar

    Yuan X C, Zhang Y H, Wang Y, et al. , 2023. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005

    CrossRef Google Scholar

    [70] Zhang W J, Tan H B, Zhang Y F, et al. , 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation. [J]. Applied Geochemistry, 63: 436-445. doi: 10.1016/j.apgeochem.2015.10.006

    CrossRef Google Scholar

    [71] 章旭, 郝红兵, 刘康林, 等, 2019. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质, 46(04): 1-9 doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01

    CrossRef Google Scholar

    Zhang X, Hao H B, Liu K L, et al. , 2019. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeological Engineering Geology, 46 ( 04 ): 1-9. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.01

    CrossRef Google Scholar

    [72] 章旭, 郝红兵, 刘康林, 等, 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制[J]. 中国地质, 47(6): 1702-1714 doi: 10.12029/gc20200608

    CrossRef Google Scholar

    Zhang X, Hao H B, Liu K L, et al. , 2020. Hydrogeochemical characteristics and genetic model of Oiga Graben Geothermal Waters System in Tibet[J]. Geology in China, 47(6): 1702-1714. doi: 10.12029/gc20200608

    CrossRef Google Scholar

    [73] 章旭, 张文, 吕国森, 等, 2023. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据[J]. 沉积与特提斯地质, 43(2): 1-16

    Google Scholar

    Zhang X, Zhang W, Lü G S, et al. , 2023. Geochemical, Geophysical Genesis of the Ranggu GeothermalSpring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration[J]. Sedimentary Geology and Tethyan Geology, 43(2): 1-16.

    Google Scholar

    [74] Zhang X B, Li X, Gao X B, 2016. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 23(7): 6286-6299. doi: 10.1007/s11356-015-5838-z

    CrossRef Google Scholar

    [75] Zhang Y H, Dai Y S, Wang Y, et al. , 2021a. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of The Total Environment, 784: 147186. doi: 10.1016/j.scitotenv.2021.147186

    CrossRef Google Scholar

    [76] Zhang Y H, He Z H, Tian H H, et al. , 2021b. Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China[J]. Environmental Earth Sciences, 80(17): 576. doi: 10.1007/s12665-021-09894-y

    CrossRef Google Scholar

    [77] Zhang Y H, Li X, Luo M, et al. , 2021c. Hydrochemistry and Entropy-Based Groundwater Quality Assessment in the Suining Area, Southwestern China[J]. Journal of Chemistry, 2021: 5591892.

    Google Scholar

    [78] Zhang Y H, Xu M, Li X, et al. , 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China[J]. Water, 10(1): 80-96. doi: 10.3390/w10010080

    CrossRef Google Scholar

    [79] 张云辉, 李晓, 许模, 等, 2021. 鲜水河地热带道孚地区地热水水文地球化学特征研究[J]. 安全与环境工程, 28(3): 42-51 doi: 10.13578/j.cnki.issn.1671-1556.20201201

    CrossRef Google Scholar

    Zhang Y H, Li X, Xu M, et al, 2021b. Hydrogeochemical Characteristics of Geothermal Waters in the Daofu Area of the Xianshuihe Geothermal Belt[J]. Safety and Environmental Engineering, 28(03): 42-51. doi: 10.13578/j.cnki.issn.1671-1556.20201201

    CrossRef Google Scholar

    [80] 赵平, 多吉, 谢鄂军, 等, 2003. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报. 19(3): 569 − 576

    Google Scholar

    Zhao P, Duo J, Xie E J, et al., 2003. Strontium isotope data for thermal waters in selected high−temperature geothermal fields, China. Acta Petrologica Sinica. 19(3): 569 − 576.

    Google Scholar

    [81] 赵元艺, 崔玉斌, 赵希涛. 2010. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 29(1): 124 − 141

    Google Scholar

    Zhao Y Y, Cui Y B, Zhao X T, 2010. Geological and geochemical features and significance of travertine in travertine−island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 29(1): 124 − 141

    Google Scholar

    [82] Zheng M P, 1989. A new type of cesium ore in Tibet[M]. Beijing:Geological Publishing House.

    Google Scholar

    [83] 周鹏, 孙明露, 张云辉, 等, 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究[J]. 沉积与特提斯地质, 43(2): 1-19

    Google Scholar

    Zhou P, Sun M L, Zhang Y H, et al. , 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet[J]. Sedimentary Geology and Tethyan Geology, 43(2): 1-19.

    Google Scholar

    [84] Zhu D C, Zhao Z D, Niu Y, et al. , 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(2832) PDF downloads(193) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint