2023 Vol. 43, No. 2
Article Contents

ZHOU Peng, SUN Minglu, ZHANG Yunhui, RONG Feng, DA Wa, WAN Zhongyan, LIU Gongxi, PENG Qinghua, HU Huashan, DAN Zeng, LIU Zhenfeng. 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003
Citation: ZHOU Peng, SUN Minglu, ZHANG Yunhui, RONG Feng, DA Wa, WAN Zhongyan, LIU Gongxi, PENG Qinghua, HU Huashan, DAN Zeng, LIU Zhenfeng. 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003

Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet

More Information
  • The geothermal resources in southern Tibet are abundant, being an important part of the Himalayan Geothermal Belt, is expected to become a new prospective area for geothermal resource development. In this paper, we analyzed the water-rock interaction, geothermal reservoir temperature, recharge source and runoff time of the geothermal springs in the active tectonic zone of the Sangri-Cuona in southern Tibet, and then revealed the genesis mechanism of geothermal water by hydrochemistry and hydrogen-oxygen-tritium isotopes. The pH values of the Molu geothermal water ranged from 6.6 to 7.2, and the TDS values were 1908 mg/L to 2326 mg/L. The hydrochemical types were mainly HCO3·Cl-Na and HCO3·Cl-Na·Ca types. The main anions and cations in geothermal water were originated from the weathering of silicate minerals and minor deep materials. The initial geothermal reservoir temperatures calculated using the silica-enthalpy equation method and silica-enthalpy diagramming method were 198℃~256 ℃, and the cold water mixing percentages were 68%~85%. In addition, the analysis of Li, B, F and other trace elements in geothermal water showed that the trace components in geothermal water in the study area were not only from water-rock interaction, but also related to the mixing of deep thermal fluids in geothermal water. The hydrogen and oxygen isotope characteristics of the area show that the groundwater recharge was mainly from atmospheric precipitation, the recharge elevation is 5652 m~5664 m, and the tritium content in the geothermal water in the foot of the model was less than 0.5TU, indicated that the geothermal water was old water. It showed that there was a longer runoff time, which provided sufficient time for water-rock interaction, while the Sumai Langqu River water was fresh water and the runoff time was short. The geothermal water in the study area had water-rock interaction in the diabase rocks of the Zhela Formation, and ion exchange was carried out. In the process of groundwater migration, geothermal water formed by heating and then exposed as geothermal springs in beneficial structural positions. This study preliminarily reveals the genetic mechanism of geothermal waters in southern Tibet, which can provide theoretical reference for the development and utilization of geothermal resources in southern Tibet.

  • 加载中
  • [1] Alçiçek H, Bülbül A, Brogi A, et al. , 2018. Origin, evolution and geothermometry of thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)[J]. Journal of Volcanology and Geothermal Research, 349: 1-30. doi: 10.1016/j.jvolgeores.2017.07.021

    CrossRef Google Scholar

    [2] Arnórsson S, Andrésdóttir A, 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 59(20): 4125-4146. doi: 10.1016/0016-7037(95)00278-8

    CrossRef Google Scholar

    [3] Ayadi R, Trabelsi R, Zouari K, et al. , 2018. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia[J]. Hydrogeology Journal, 26(4): 983-1007. doi: 10.1007/s10040-017-1702-1

    CrossRef Google Scholar

    [4] Bakari S S, Aagaard P, Vogt R D, et al. , 2013. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania[J]. Journal of Geochemical Exploration, 130: 1-14. doi: 10.1016/j.gexplo.2013.02.008

    CrossRef Google Scholar

    [5] Cao H W, Pei Q M, Santosh M, et al. , 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 234: 104229. doi: 10.1016/j.earscirev.2022.104229

    CrossRef Google Scholar

    [6] 曹华文, 李光明, 张林奎, 等, 2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 42(2): 189 − 211

    Google Scholar

    Cao H W, Li G M, Zhang L K, et al., 2022. Genesis of Himalayan Leucogranite and its potentiality of rare−metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 42(2): 189 − 211.

    Google Scholar

    [7] Chang X W, Xu M, Jiang L W, et al. , 2021. Hydrogeochemical Characteristics and Formation of Low-Temperature Geothermal Waters in Mangbang-Longling Area of Western Yunnan, China[J]. Journal of Chemistry, 2021: 1-13.

    Google Scholar

    [8] Cheng Y, Pang Z, Kong Y, et al. , 2022. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey[J]. Geothermics, 102: 102386. doi: 10.1016/j.geothermics.2022.102386

    CrossRef Google Scholar

    [9] Dansgaard W, 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    CrossRef Google Scholar

    [10] 董国臣, 莫宣学, 赵志丹, 等, 2021. 大陆碰撞过程的火山岩响应: 以西藏林周林子宗火山岩为例[J]. 沉积与特提斯地质, 41(2): 332 − 339

    Google Scholar

    Dong G C, Mo X X, Zhao Z D, et al. , A response of volcanic rocks to the India−Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet[J]. Sedimentary Geology and Tethyan Geology, 41(2): 332 − 339.

    Google Scholar

    [11] 多吉卫色, 索朗次仁, 平措朗杰, 等, 2023. 西藏自治区隆子县土壤硒地球化学特征及影响因素[J]. 岩矿测试, 42(1): 177-191 doi: 10.15898/j.cnki.11-2131/td.202204240087

    CrossRef Google Scholar

    Duo J W S, Suo L C R, Ping C L J, et al. , 2023. Geochemical Characteristics and Influencing Factors of Soil Selenium in Longzi County, Tibet Autonomous Region[J]. Rock and Mineral Analysis, 42(1): 177-191. doi: 10.15898/j.cnki.11-2131/td.202204240087

    CrossRef Google Scholar

    [12] Erbaş H A, Bozdağ A, 2022. Hydrogeochemical characteristics and evaluation of the geothermal fluids in the Gazlıgöl geothermal field (Afyonkarahisar), Western Anatolia, Turkey[J]. Geothermics, 105: 102543. doi: 10.1016/j.geothermics.2022.102543

    CrossRef Google Scholar

    [13] Fan Y F, Pang Z H, Liao D W, et al. , 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau[J]. Water, 11(8): 1631. doi: 10.3390/w11081631

    CrossRef Google Scholar

    [14] Fournier R O, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [15] Garrels R M, Christ C L, 1965. Solutions, minerals and equilibria[M]. Harper and Row, New York, 1965. 1−450.

    Google Scholar

    [16] Giggenbach W F, 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [17] Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    CrossRef Google Scholar

    [18] Gil-Márquez J M, Sültenfuß J, Andreo B, et al. , 2020. Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings[J]. Journal of Hydrology, 580: 124263. doi: 10.1016/j.jhydrol.2019.124263

    CrossRef Google Scholar

    [19] 顾慰祖, 庞忠和, 王全九, 2011. 同位素水文学[M]. 北京: 科学出版社.

    Google Scholar

    Gu W Z, Pang Z H, Wang Q J, 2011. Isotopic Hydrology[M]. Beijing: Science Press.

    Google Scholar

    [20] Gudala M, Govindarajan S K, Yan B, et al. , 2022. Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling[J]. Energy, 253: 124173. doi: 10.1016/j.energy.2022.124173

    CrossRef Google Scholar

    [21] Guo Q H, Pang Z H, Wang Y C, et al. , 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [22] Guo Q H, Planer-Friedrich B, Liu M L, et al. , 2019. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008

    CrossRef Google Scholar

    [23] Guo Q H, Wang Y C, Liu W, 2009. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 59(7): 1589-1597.

    Google Scholar

    [24] 郭镜, 夏时斌, 2022. 川东褶皱带地热系统的空间载体——相互连通的断裂系统: 以四川广安牟家镇地热井为例[J]. 沉积与特提斯地质, 42(4): 642-652

    Google Scholar

    Guo J, Xia S B, 2022. Spatial carrier of geothermal system in eastern Sichuan fold zone—interconnected fault system: A case study of geothermal well in Moujia Town, Guang'an, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 42(4): 642-652.

    Google Scholar

    [25] 郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 94(12): 3544 − 3554

    Google Scholar

    Guo Q H. 2020. Magma−heated geothermal systems and hydrogeochemical evidence of their occurrence [J]. Acta Geologica Sinica, 94(12): 3544 − 3554.

    Google Scholar

    [26] Hao C M, Zhang W, Gui H R, 2020. Hydrogeochemistry characteristic contrasts between low- and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province, China[J]. Applied Geochemistry, 117: 104584. doi: 10.1016/j.apgeochem.2020.104584

    CrossRef Google Scholar

    [27] Helgeson H C, Garrels, R. M. , MacKenzie, F. T, 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications[J]. Geochimica et Cosmochimica Acta, 33(4): 455-481. doi: 10.1016/0016-7037(69)90127-6

    CrossRef Google Scholar

    [28] 胡智文, 陈俊旭, 赵志芳, 等, 2021. 隆子县土地利用多样化及其聚集度分析[J]. 西部林业科学, 50(3): 164-170.

    Google Scholar

    Hu Z W, Chen J X, Zhao Z F, et al. , 2021. Analysis of Land Use Diversification and Its Aggregation in Longzi County [J]. Journal of West China Forestry Science, 50(3): 164170.

    Google Scholar

    [29] 胡志华, 高洪雷, 万汉平, 等, 2022. 西藏羊八井地热田水热蚀变的时空演化特征[J]. 地质论评, 68(1): 359-374

    Google Scholar

    Hu Z H, Gao H L, Wan H P et al. , 2022. Temporal and spatial evolution of hydrothermal alteration in the Yangbajing Geothermal Field, Xizang(Tibet) [J]. Geological Review, 68(1): 359-374.

    Google Scholar

    [30] Jeelani G, Kumar U S, Bhat N A, et al. , 2015. Variation ofδ18O, δD and3H in karst springs of south Kashmir, western Himalayas (India)[J]. Hydrological Processes, 29(4): 522-530. doi: 10.1002/hyp.10162

    CrossRef Google Scholar

    [31] Li J X, Wang X Y, Ruan C X, et al. , 2022a. Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China[J]. Journal of Hydrology, 612: 128022. doi: 10.1016/j.jhydrol.2022.128022

    CrossRef Google Scholar

    [32] Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    CrossRef Google Scholar

    [33] 李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(1): 1-14

    Google Scholar

    Li G M, Zhang L G, Wu J Y, et al. , 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China[J]. Sedimentary Geology and Tethyan Geology, 40(1): 1-14.

    Google Scholar

    [34] 李义曼, 陈凯, 天娇, 等, 2022. 广东丰顺汤坑地热田热水中稀土元素特征及其影响因素[J]. 地质论评, 68(3): 993-1005

    Google Scholar

    Li Y M, Chen K, Tian J et al. , 2022. REE characteristics and their influencing factors of the geothermal water in Tangkeng geothermal field, Fengshun, Guangdong Province[J]. Geological Review, 68(3): 993-1005.

    Google Scholar

    [35] Liu J T, Gao Z J, Wang Z Y, et al. , 2020. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China[J]. Environmental Monitoring and Assessment, 192(6): 384. doi: 10.1007/s10661-020-08356-5

    CrossRef Google Scholar

    [36] 刘昭, 2014. 西藏尼木—那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院.

    Google Scholar

    Liu Z, 2014. The forming mechanism of typical high−temperature geothermal systems in Nimu−Naqu geothermal belt, Tibet[D]. Beijing: Chinese Academy of Geological Sciences.

    Google Scholar

    [37] Luo J, Li Y M, Tian J, et al. , 2022. Geochemistry of geothermal fluid with implications on circulation and evolution in Fengshun-Tangkeng geothermal field, South China[J]. Geothermics, 100: 102323. doi: 10.1016/j.geothermics.2021.102323

    CrossRef Google Scholar

    [38] Ma J, Sun L H, Chen S G, et al. , 2020. Hydrochemical Characteristics and Water Quality Assessment of Surface Water and Groundwater in Agriculture Demonstration Base, Jiagou District, Northern Anhui Province, China[J]. Nature Environment and Pollution Technology, 19(4): 1713-1721. doi: 10.46488/NEPT.2020.v19i04.042

    CrossRef Google Scholar

    [39] 马子宁, 韩中鹏, 李亚林, 等, 2022. 西藏南部康巴穹隆剥露历史分析: 来自低温热年代学的证据[J]. 沉积与特提斯地质, 42(2): 300 − 309

    Google Scholar

    Ma Z N, Han Z P, Li Y L, et al. , 2022. Exhumation history of the Kampa dome in the southern Tibet: Evidence from low−temperature thermochronology [J]. Sedimentary Geology and Tethyan Geology, 42(2): 300 − 309.

    Google Scholar

    [40] Moraga J, Duzgun H S, Cavur M, et al. , 2022. The Geothermal Artificial Intelligence for geothermal exploration[J]. Renewable Energy, 192: 134-149. doi: 10.1016/j.renene.2022.04.113

    CrossRef Google Scholar

    [41] Muther T, Syed F I, Lancaster A T, et al. , 2022. Geothermal 4.0: AI-enabled geothermal reservoir development- current status, potentials, limitations, and ways forward[J]. Geothermics, 100: 102348. doi: 10.1016/j.geothermics.2022.102348

    CrossRef Google Scholar

    [42] 宁爱凤, 尹观, 刘天仇, 2000. 拉萨河地区的大气降水同位素分布特征[J]. 矿物岩石, 20(3): 95-95

    Google Scholar

    Ning A F, Yin G, Liu T C, 2000. Characteristics of Isotope Distribution of Atmospheric Precipitation in the Lsha River Area[J]. Jmineral Petrol, 20(3): 95-95.

    Google Scholar

    [43] Pérez-Zárate D, Prol-Ledesma R M, Rodríguez-Díaz A A, et al. , 2022. Soil gas flux, hydrogeochemistry and multicomponent geothermometry of thermal springs in the La Escalera geothermal prospect, Mexico[J]. Applied Geochemistry, 139: 105256. doi: 10.1016/j.apgeochem.2022.105256

    CrossRef Google Scholar

    [44] Piper A M, 1944. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions-American Geophysical Union, 25(6): 914-923. doi: 10.1029/TR025i006p00914

    CrossRef Google Scholar

    [45] 卿成实, 张志, 张林奎, 等, 2023. 西藏隆子县扎西康铅锌多金属矿床ⅩⅤ号矿体元素分带特征研究[J]. 沉积与特提斯地质, 43(1): 130-144 doi: 10.19826/j.cnki.1009-3850.2022.09002

    CrossRef Google Scholar

    Qing C S, Zhang Z, Zhang L K, et al. , 2022. The element zonation characteristics of No. ⅩⅤ ore body in Zhaxikang lead-zinc polymetallic deposit, Tibet[J]. Sedimentary Geology and Tethyan Geology, 43(1): 130-144. doi: 10.19826/j.cnki.1009-3850.2022.09002

    CrossRef Google Scholar

    [46] 邱楠生, 唐博宁, 朱传庆, 2022. 中国大陆地区温泉分布的深部热背景[J]. 地质学报, 96(1): 195-207

    Google Scholar

    Qiu N S, Tang B N, Zhu C Q, 2022. Deep thermal background of hot spring distribution in the Chinese continent [J]. Acta Geologica Sinica, 96(1): 195-207.

    Google Scholar

    [47] Ren X F, Li P Y, He X D, et al. , 2021. Hydrogeochemical Processes Affecting Groundwater Chemistry in the Central Part of the Guanzhong Basin, China[J]. Arch Environ Contam Toxicol, 80(1): 74-91. doi: 10.1007/s00244-020-00772-5

    CrossRef Google Scholar

    [48] Shvartsev S L, Sun Z, Borzenko S V, et al. , 2018. Geochemistry of the thermal waters in Jiangxi Province, China[J]. Applied Geochemistry, 96: 113-130. doi: 10.1016/j.apgeochem.2018.06.010

    CrossRef Google Scholar

    [49] Su J B, Tan H B, 2022. The genesis of Rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northern Yadong-Gulu rift[J]. Ore Geology Reviews, 147: 104987. doi: 10.1016/j.oregeorev.2022.104987

    CrossRef Google Scholar

    [50] 苏艳, 马致远, 刘方, 等, 2007. 西安咸阳地下热水氘过量参数研究[J]. 煤田地质与勘察, 35(3): 39 − 41.

    Google Scholar

    Su Y, Ma Z Y, Liu F, et al. , 2007. Deuterium excess parameter features study on thermal groundwater of Xi′an and Xianyang[J]. Coal Geology & Exploration, 35(3): 39 − 42.

    Google Scholar

    [51] 隋丽嫒, 周训, 李状, 等, 2022. 安徽滁河断裂带温泉的水化学和同位素特征及成因分析[J]. 地质论评, 68(3): 981-992

    Google Scholar

    Sui L Y, Zhou X, Li Z et al. , 2022. Hydrochemical and isotopic characteristics and genesis of hot springs in the Chuhe fault zone, Anhui [J]. Geological Review, 68(3): 981-992.

    Google Scholar

    [52] 谭捍东, 魏文博, Martyn Unsworth, 等, 2004. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报, 47(4): 685 − 690

    Google Scholar

    Tan H D, Wei W B, Martyn U, et al.. 2014. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang plateau[J]. Chinese Journal of Geophysics, 47(4): 685 − 690.

    Google Scholar

    [53] 佟伟, 章铭陶, 张知非, 等, 2000. 西藏地热[M]. 北京: 科学出版社.

    Google Scholar

    Tong W, Zhang M T, Zhang Z F, et al. , 2000. Geothermals Beneath Xizang (Tibetan) Plateau[M]. Beijing: science press.

    Google Scholar

    [54] 佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志[M]. 北京: 科学出版社.

    Google Scholar

    Tong W, Liao Z J, Wen S B, et al. , 2000. Thermal Spring in Tibet[M]. Beijing: science press.

    Google Scholar

    [55] Wang C G, Zheng M P, 2019. Hydrochemical Characteristics and Evolution of Hot Fluids in the Gudui Geothermal Field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010

    CrossRef Google Scholar

    [56] 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923-1937

    Google Scholar

    Wang G L, Lin W J, 2020. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923-1937.

    Google Scholar

    [57] 王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449-450

    Google Scholar

    Wang G L, Zhang W, Liang J Y, et al. , 2017. Evaluation of Geothermal Resources Potential in China[J]. Acta Geoscientica Sinica, 38(4): 449-450.

    Google Scholar

    [58] 王军, 刘天仇, 尹观, 2000. 西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J]. 地质地球化学, 28(1): 63-67

    Google Scholar

    Wang J, Liu T C, Yin G, 2000. Characteristics of Isotope Distribution in Precipition in The Middle-Lower Reaches of Yarlung Zangbo River[J]. Earth and Environment, 28(1): 63-67.

    Google Scholar

    [59] 王思琪, 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京).

    Google Scholar

    Wang S Q, 2017. Hydrogeochemical Processes and Genesis Machenism of High−temperature Geothermal System in Gudui, Tibet[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

    [60] Wang Y C, Gu H Y, Li D, et al. , 2021. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 80(11): 415. doi: 10.1007/s12665-021-09577-8

    CrossRef Google Scholar

    [61] 王迎春, 周金林, 李亮, 等, 2022. 羊八井地热田地热地质条件及其对超临界地热资源勘探的启示[J]. 天然气工业, 42(4): 35-45

    Google Scholar

    Wang Y C, Zhou J L, Li L, et al. , 2022. Geothermal geological conditions in the Yangbajing geothermal field and its enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry, 42(4): 35-45.

    Google Scholar

    [62] Wang Y, Li L, Wen H, et al. , 2022. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet[J]. Journal of Hydrology, 604: 127243. doi: 10.1016/j.jhydrol.2021.127243

    CrossRef Google Scholar

    [63] 魏文博, 金胜, 叶高峰, 等, 2009. 藏南岩石圈导电性结构与流变性: 超宽频带大地电磁测深研究结果[J]. 中国科学, 39(11): 1591-1606

    Google Scholar

    Wei W B, Jin S, Ye G F, et al, 2009. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magmeto tulleric sounding[J]. Scientia Sinica(Terrae), 39(11): 1591-1606.

    Google Scholar

    [64] 卫克勤, 林瑞芬, 王志祥, 1983. 西藏羊八井地热水的氢、氧稳定同位素组成及氚含量[J]. 地球化学, 12(4): 338-346

    Google Scholar

    Wei K Q, Lin R F, Wang Z X, 1983. Hydrogen and Oxygen Stable Isotopic Composition and Hydrogen and Tritium Content of Waters from Yangbajain Geothermal Area, Xizang, China[J]. Geochemica, 12(4): 338-346.

    Google Scholar

    [65] 许继影, 桂和荣, 葛春贵, 等, 2021. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J]. 工程地质学报, 29(4): 1037-1047

    Google Scholar

    Xu J Y, Gui H R, Ge C G, et al. , 2021. Hydrogeochemical Characteristics and Source Identification of Deep Geothermal Water in Qingdong Coal Mine, Huaibei, Anhui Province[J]. Journal of Engineering Geology, 29(4): 1037-1047.

    Google Scholar

    [66] 许鹏, 谭红兵, 张燕飞, 等, 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142-1154

    Google Scholar

    Xu P, Tan H B, Zhang Y F, et al. , 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142-1154.

    Google Scholar

    [67] 薛帅, 卢占武, 李文辉, 等, 2022. 青藏高原错那-沃卡裂谷中部电性结构及其动力学意义[J]. 地学前缘, 29(2): 393-401

    Google Scholar

    Xue S, Lu Z W, Li W H, et al. , 2022. Electrical resistivity structure beneath the central Cona Oiga rift, southern Tibet, and its implications for regional dynamics[J]. Earth Science Frontiers, 29(2): 393-401.

    Google Scholar

    [68] 严宇鹏, 牛凤霞, 刘佳, 等, 2022. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 42(2): 815-825 doi: 10.19674/j.cnki.issn1000-6923.2022.0037

    CrossRef Google Scholar

    Yan Y P, Niu F X, Liu J, et al. , 2022. Hydrochemical characteristics and sources of the upper Yarlung Zangbo River in summer[J]. China Environmental Science, 42(2): 815-825. doi: 10.19674/j.cnki.issn1000-6923.2022.0037

    CrossRef Google Scholar

    [69] 喻晓, 吕新彪, 曹华文, 2023. 藏南下侏罗统日当组地球化学和碎屑锆石 U−Pb 年代学特征及构造意义[J]. 沉积与特提斯地质, 1 − 18

    Google Scholar

    Yu X, Lv X B, Cao H W, 2023. Geochemistry and detrital zircon U−Pb geochronology of the Jurassic Ridang Formation in the southern Tibet and its tectonic implications[J]. Sedimentary Geology and Tethyan Geology, 1 − 18.

    Google Scholar

    [70] Yu J S, Zhang H B, Yu F J, et al, 1984. Oxygen and Hydrogen Isotopic Compositions of Meteoric Waters in the Eastern Part of Xizang[J]. Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285

    CrossRef Google Scholar

    [71] 赵平, 金建, 张海政, 等, 1998. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 33(1): 62 − 73

    Google Scholar

    Zhao P, Jin J, Zhang H Z, et al. , 1998. Chemical composition of thermal water in the Yangbajin geothermal field, Tibet[J]. Scientia Geologica Sinica, 33(1): 62 − 73.

    Google Scholar

    [72] 张涛, 蔡五田, 李颖智, 等, 2017. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 38(11): 4537-4545

    Google Scholar

    Zhang T, Cai W T, Li L Z, et al. , 2017. Major Ionic Features and Their Possible Controls in the Water of the Niyang River Basin[J]. Environmental Science, 38(11): 4537-4545.

    Google Scholar

    [73] 张薇, 王贵玲, 赵佳怡, 等, 2021. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质, 35(1): 188-198

    Google Scholar

    Zhang W, Wang G L, Zhao J Y, et al. , 2021. Geochemical Characteristics of Medium-high Temperature Geothermal Fluids in West Sichuan and Their Geological Implications[J]. Geoscience, 35(1): 188-198.

    Google Scholar

    [74] Zhang X B, Hu Q H, 2018. Development of Geothermal Resources in China: A Review[J]. Journal of Earth Science, (2): 452-467.

    Google Scholar

    [75] 赵佳怡, 张薇, 张汉雄, 等, 2019. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 46(4): 81-89 doi: 10.16030/j.cnki.issn.1000-3665.2019.04.11

    CrossRef Google Scholar

    Zhao J Y, Zhang W, Zhang H X, et al. , 2019. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 46(4): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.11

    CrossRef Google Scholar

    [76] Zheng X H, Duan C Y, Xia B, et al. , 2018. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet[J]. Journal of Earth Science, 30(4): 870-878.

    Google Scholar

    [77] Zhou R, Zhou X C, Li Y, et al. , 2022. Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai–Tibet Plateau[J]. Water, 14(9): 1496. doi: 10.3390/w14091496

    CrossRef Google Scholar

    [78] 蒙晖仁, 曹锐, 陈德凡, 等, 2023. 西藏古堆地热田水热蚀变类型、分布特征及对勘探方向的启示[J]. 地球学报, 44(1): 156-168.

    Google Scholar

    Meng H R, Cao R, Chen D F, et al., 2023. Types, Distribution Characteristics, and Exploration Direction of Hydrothermal Alteration in Gudui Geothermal Field, Tibet[J]. Acta Geoscientica Sinica, 44(1): 156-168.

    Google Scholar

    [79] 吴中海, 张永双, 胡道功, 等, 2008. 西藏错那-拿日雍错地堑的第四纪正断层作用及其形成机制探讨[J]. 第四纪研究, 28(2): 232-242.

    Google Scholar

    Wu Z H, Zhang Y S, Hu D G, et al., 2008. Quaternary Normal Faulting and Its Dynamic Mechanism of the Cona-Nariyong Co Graben in South-Eastern Tibet[J]. Quaternary Sciences, 28(2): 232-242.

    Google Scholar

    [80] Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(346): 1702-1703.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(2132) PDF downloads(230) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint