2023 Vol. 43, No. 2
Article Contents

YUAN Xingcheng, ZHANG Yunhui, WANG Ying, HUANG Xun, SUN Minglu, LÜ Guosen. 2023. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sedimentary Geology and Tethyan Geology, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005
Citation: YUAN Xingcheng, ZHANG Yunhui, WANG Ying, HUANG Xun, SUN Minglu, LÜ Guosen. 2023. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sedimentary Geology and Tethyan Geology, 43(2): 357-372. doi: 10.19826/j.cnki.1009-3850.2023.04005

Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone

More Information
  • Geothermal resources have great potential as clean energy, and can be used to achieve the goal of carbon peaking and carbon neutrality. The Xianshuihe fault zone in western Sichuan is rich in geothermal resources, but geothermal scaling has become one of the main problems in the development and utilization of geothermal resources. In order to further identify the occurrence state and scaling trend characteristics of geothermal resources, this paper takes the six areas of Moxi, Yulingong, Erdaoqiao, Zhonggu, Bamei and Daofu on the Xianshuihe fault zone as the research area, and uses water chemistry analysis, hydrogen and oxygen isotopes, heat storage temperature estimation and scaling trend characteristics analysis to carry out the geothermal water hydrochemistry and scaling trend characteristics of the Xianshuihe fault zone. The results show that the hydrochemical types of geothermal water are mainly Na-HCO3, Ca-HCO3, Ca·Na-HCO3 and Na-Cl·HCO3; Geothermal water mainly comes from the supply of atmospheric precipitation and oxygen drift occurs in most areas; The geothermal water has not reached the complete water-rock equilibrium state, and the shallow geothermal reservoir temperature is 61℃~172℃. The average temperature of deep thermal reservoir is 183℃ to 283℃, and the average cold water mixing ratio is 77% to 86%; The exponential analysis method and the saturation index discrimination method show that carbonate scaling may occur in the all above geothermal areas. Silicate scaling may only occur in several areas with abnormally high SiO2 content, while sulfate scaling almost does not occur. According to the cold water mixing ratio estimated by the silicon-enthalpy model, the fluid composition of the deep reservoir is reconstructed. Combined with the formula, it is calculated that the carbonate scaling degree in the Erdaoqiao area is the most serious, mainly because the reservoir lithology in the area is carbonate salt, and the reservoir temperature can promote the precipitation of CaCO3. For descaling and prevention, mechanical removal, control of CO2 partial pressure, control of solution pH, and use of chemical additives (scale inhibitors) can be used. The research results can provide a theoretical basis for the sustainable development and utilization of geothermal resources in the Xianshuihe fault zone and western Sichuan.

  • 加载中
  • [1] Akın T, Kargı H, 2019. Modeling the geochemical evolution of fluids in geothermal wells and its implication for sustainable energy production[J]. Geothermics, 77: 115-129. doi: 10.1016/j.geothermics.2018.09.003

    CrossRef Google Scholar

    [2] Alçiçek H, Bülbül A, Brogi A, et al. , 2017. Origin, evolution and geothermometry of thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)[J]. Journal of Volcanology and Geothermal Research, 349: 1-30.

    Google Scholar

    [3] Ámannsson H, 1989. Predicting calcite deposition in krafla boreholes[J]. Geothermics, 18(1-2): 25-32. doi: 10.1016/0375-6505(89)90006-0

    CrossRef Google Scholar

    [4] Bai M, Chevalier M-L, Pan J, et al. , 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 485: 19-31. doi: 10.1016/j.jpgl.2017.12.045

    CrossRef Google Scholar

    [5] Blasch K W, Bryson J R, 2007. Distinguishing sources of ground water recharge by using delta2H and delta18O[J]. Ground Water, 45(3): 294-308. doi: 10.1111/j.1745-6584.2006.00289.x

    CrossRef Google Scholar

    [6] Bozau E, Häußler S, van Berk W, 2015. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST[J]. Geothermics, 53: 540-547. doi: 10.1016/j.geothermics.2014.10.002

    CrossRef Google Scholar

    [7] 蔡义汉, 2004. 地热直接利用[M]. 天津: 天津大学出版社.

    Google Scholar

    Cai Y H, 2004. Geothermal Direct−Use[M]. Tianjin: University of Tianjin Press.

    Google Scholar

    [8] Capaccioni B, Vaselli O, Tassi F, et al. , 2011. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy)[J]. Journal of Hydrology, 396(3-4): 292-301. doi: 10.1016/j.jhydrol.2010.11.015

    CrossRef Google Scholar

    [9] Chauhan V, Saevarsdottir G, Tesfahunegn Y A, et al. , 2021. Computational study of two-phase flashing flow in a calcite scaled geothermal wellbore[J]. Geothermics, 97: 102239. doi: 10.1016/j.geothermics.2021.102239

    CrossRef Google Scholar

    [10] Corsi R, 1986. Scaling and corrosion in geothermal equipment: problems and preventive measures[J]. Geothermics, 15(5-6): 839-856. doi: 10.1016/0375-6505(86)90097-0

    CrossRef Google Scholar

    [11] Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [12] Dawe R A, Zhang Y, 1997. Kinetics of calcium carbonate scaling using observations from glass micromodels[J]. Journal of Petroleum Science and Engineering, 18(3): 179-187.

    Google Scholar

    [13] Delalande M, Bergonzini L, Gherardi F, et al. , 2011. Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): Preliminary conceptual model[J]. Journal of volcanology and geothermal research, 199(1-2): 127-141. doi: 10.1016/j.jvolgeores.2010.11.002

    CrossRef Google Scholar

    [14] Ellis P, 1983. Review of shell−and−tube heat exchanger fouling and corrosion in geothermal power plant service radian corporation[A].

    Google Scholar

    [15] Erbaş H A, Bozdağ A, 2022. Hydrogeochemical characteristics and evaluation of the geothermal fluids in the Gazlıgöl geothermal field (Afyonkarahisar), Western Anatolia, Turkey[J]. Geothermics, 105: 102543. doi: 10.1016/j.geothermics.2022.102543

    CrossRef Google Scholar

    [16] Fournier R O, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [17] Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of waterand gas discharges from the Rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    CrossRef Google Scholar

    [18] Giggenbach W F, 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [19] Guo Q, Pang Z H, Wang Y C, et al. , 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [20] Jiang G Y, Wen Y M, Liu Y J, et al. , 2015. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion[J]. Geophysical Research Letters, 42(9): 3273-3281. doi: 10.1002/2015GL063750

    CrossRef Google Scholar

    [21] 姜哲, 周训, 陈柄桦, 等, 2022. 四川康定市二道桥地区地下热水稳定同位素特征及热储温度计算[J]. 现代地质, 36(4): 1183-1192 doi: 10.19657/j.geoscience.1000-8527.2022.04.20

    CrossRef Google Scholar

    Jiang Z, Zhou X, Chen B H, et al, 2022. Stable Isotope Characteristics of Geothermal Water and Calculation of Geothermal Reservoir Temperature in the Erdaoqiao Area of Kangding in Sichuan Province[J]. Geoscience, 36(4): 1183-1192. doi: 10.19657/j.geoscience.1000-8527.2022.04.20

    CrossRef Google Scholar

    [22] Kiaei Z, Haghtalab A, 2014. Experimental study of using Ca-DTPMP nanoparticles in inhibition of CaCO3 scaling in a bulk water process[J]. Desalination, 338: 84-92. doi: 10.1016/j.desal.2014.01.027

    CrossRef Google Scholar

    [23] Kong Y L, Pang Z H, Shao H B, et al. , 2014. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2(1): 1-12. doi: 10.5194/gtes-2-1-2014

    CrossRef Google Scholar

    [24] Kong Y L, Wang K, Li J, et al. , 2019. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources[J]. Water, 11(6): 1239. doi: 10.3390/w11061239

    CrossRef Google Scholar

    [25] Larson T E, Sollo F R, 1967. Loss in Water Main Carrying Capacity[J]. Journal (American Water Works Association), 59(12): 1565-1572. doi: 10.1002/j.1551-8833.1967.tb03486.x

    CrossRef Google Scholar

    [26] 雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 水文地球化学—以西藏羊八井为例[J]. 地球科学48(3): 935 − 945

    Google Scholar

    Lei H W, Bai B, Cui Y X, et al, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet[J]. Earth science, 48(3): 935 − 945.

    Google Scholar

    [27] Li J X, Yang G, Sagoe G, et al. , 2018. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 75: 154-163. doi: 10.1016/j.geothermics.2018.04.008

    CrossRef Google Scholar

    [28] Li X, Huang X, Liao X, et al. , 2020a. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    CrossRef Google Scholar

    [29] 李晓, 王金金, 黄珣, 等, 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征[J]. 成都理工大学学报(自然科学版), 45(6): 733-745 doi: 10.3969/j.issn.1671-9727.2018.06.09

    CrossRef Google Scholar

    Li X, Wang J J, Huang X, et al, 2018. Chemical and isotopic characteristics of hot water in the Kangding-Daofu section of Xianshuihe fault zone, Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 45(6): 733-745. doi: 10.3969/j.issn.1671-9727.2018.06.09

    CrossRef Google Scholar

    [30] 李义曼, 庞忠和, 2018. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 6(4): 274-281

    Google Scholar

    Li Y M, Pang Z H, 2018. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System[J]. Advances in New and Renewable Energy, 6(4): 274-281.

    Google Scholar

    [31] Li Y M, Pang Z H, Galeczka I M, 2020b. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 87: 101844. doi: 10.1016/j.geothermics.2020.101844

    CrossRef Google Scholar

    [32] Liu Q Q, Shi Y N, Wei D P, et al. , 2017. Near-surface Geothermal Gradient Observation and Geothermal Analyses in the Xianshuihe Fault Zone, Eastern Tibetan Plateau[J]. Acta Geologica Sinica - English Edition, 91(2): 414-428. doi: 10.1111/1755-6724.13108

    CrossRef Google Scholar

    [33] Liu W, Guan L F, Liu Y, et al. , 2022. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 607: 127554. doi: 10.1016/j.jhydrol.2022.127554

    CrossRef Google Scholar

    [34] Lu L H, Pang Z H, Kong Y L, et al. , 2018. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6

    CrossRef Google Scholar

    [35] Luo J, Pang Z H, Kong Y K, et al. , 2017. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China[J]. Environmental Earth Sciences, 76(9): 2-24.

    Google Scholar

    [36] Peralta Arnold Y, Cabassi J, Tassi F, et al. , 2017. Fluid geochemistry of a deep-seated geothermal resource in the Puna plateau (Jujuy Province, Argentina)[J]. Journal of Volcanology and Geothermal Research, 338: 121-134. doi: 10.1016/j.jvolgeores.2017.03.030

    CrossRef Google Scholar

    [37] Piper A, 1944. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses[J]. Eos Transactions American Geophysical Union, 25: 914-923. doi: 10.1029/TR025i006p00914

    CrossRef Google Scholar

    [38] Satman A, Ugur Z, Onur M, 1999. The effect of calcite deposition on geothermal well inflow performance[J]. Geothermics, 28: 425-44. doi: 10.1016/S0375-6505(99)00016-4

    CrossRef Google Scholar

    [39] Singh C K, Kumar A, Shashtri S, et al. , 2017. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India[J]. Journal of Geochemical Exploration, 175: 59-71. doi: 10.1016/j.gexplo.2017.01.001

    CrossRef Google Scholar

    [40] Tang X C, Zhang J, Pang Z H, et al. , 2017. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system[J]. Tectonophysics, 717: 433-448. doi: 10.1016/j.tecto.2017.08.035

    CrossRef Google Scholar

    [41] Tang X C, Zhang J, Pang Z H, et al. , 2016. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China[J]. Environmental Earth Sciences, 76(1): 1-15.

    Google Scholar

    [42] 唐渊, 王鹏, 邓红, 等, 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 41(7): 1121-1143 doi: 10.12097/j.issn.1671-2552.2022.07.001

    CrossRef Google Scholar

    Tang Y, Wang P, Deng H, et al, 2022. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau[J]. Geological Bulletin of China, 41(7): 1121-1143. doi: 10.12097/j.issn.1671-2552.2022.07.001

    CrossRef Google Scholar

    [43] Tapponnier P, Molnar P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905

    CrossRef Google Scholar

    [44] Truesdell A, Fournier R, 1977. Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. USGS J Res, 5: 49-52.

    Google Scholar

    [45] Wang E, Burchfiel B C, Royden L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of Southwestern Sichuan and Central Yunnan, China[J]. Special Paper of the Geological Society of America, 327: 1-108.

    Google Scholar

    [46] 王奎峰, 杨德平, 宋香锁, 等, 2010. 临清市馆陶组地热水化学特征及结垢腐蚀性研究[J]. 水文地质工程地质, 37(1): 130-134 doi: 10.3969/j.issn.1000-3665.2010.01.026

    CrossRef Google Scholar

    Wang K F, Yang D P, Song X S, et al, 2010. Chemical characteristics and encrustment and erosion of geothermal water in the Guantao Formation in Linqing[J]. Hydrogeology & Engineering Geology, 37(1): 130-134. doi: 10.3969/j.issn.1000-3665.2010.01.026

    CrossRef Google Scholar

    [47] Wang Y C, Gu H Y, Li D, et al. , 2021. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 80(11): 415. doi: 10.1007/s12665-021-09577-8

    CrossRef Google Scholar

    [48] 王延欣, 刘世良, 边庆玉, 等, 2015. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 3(3): 202-206

    Google Scholar

    Wang Y X, Liu S L, Bian Q Y, et al, 2015. Scaling Analysis of Geothermal Well from Ganzi and Countermeasures for Anti-scale[J]. Advances in New and Renewable Energy, 3(3): 202-206.

    Google Scholar

    [49] Wanner C, Eichinger F, Jahrfeld T, et al. , 2017. Unraveling the Formation of Large Amounts of Calcite Scaling in Geothermal Wells in the Bavarian Molasse Basin: A Reactive Transport Modeling Approach[J]. Procedia Earth and Planetary Science, 17: 344-347. doi: 10.1016/j.proeps.2016.12.087

    CrossRef Google Scholar

    [50] 韦梅华, 2012. 四川省康定县地下热水结垢机理及趋势分析[D]: 中国地质大学(北京).

    Google Scholar

    Wei M H, 2012. Analysis of the scaling Mechanism and Trend of Thermal Groundwater in Kangding County of Sichuan Province[D]. China University of Geosciences(Beijing).

    Google Scholar

    [51] 韦梅华, 田廷山, 孙燕冬, 等, 2012. 四川省康定地区地热水结垢趋势分析[J]. 水文地质工程地质, 39(5): 132-138 doi: 10.16030/j.cnki.issn.1000-3665.2012.05.029

    CrossRef Google Scholar

    Wei M H, Tian T S, Sun Y D, et al, 2012. A study of the scaling trend of thermal groundwater in Kangding county of Sichuan[J]. hydrogeology & engineering geology, 39(5): 132-138. doi: 10.16030/j.cnki.issn.1000-3665.2012.05.029

    CrossRef Google Scholar

    [52] Xu S, Guan L F, Zhang M L, et al. , 2022. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 65(1): 139-155. doi: 10.1007/s11430-021-9810-x

    CrossRef Google Scholar

    [53] 杨东方, 唐令龙, 1995. 西藏地热井除垢[J]. 四川电力技术, 18(4): 8-10

    Google Scholar

    Yang D F, Tang L L, 1955. Scales Removal of Geothermal Well in Xizang[J]. Sichuan electric power technology, 18(4): 8-10.

    Google Scholar

    [54] 张恒, 胡亚召, 云智汉, 等, 2016. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用[J]. 新能源进展, 4(2): 111-117

    Google Scholar

    Zhang H, Hu Y Z, Yun Z H, et al, 2016. Applying Hydro-Geochemistry Simulating Technology to Study Scaling of the High-Temperature Geothermal Well in Kangding County[J]. Advances in New and Renewable Energy, 4(2): 111-117.

    Google Scholar

    [55] Zhang P Z, 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 584: 7-22. doi: 10.1016/j.tecto.2012.02.021

    CrossRef Google Scholar

    [56] Zhang Y P, Dawe R, 1998. The kinetics of calcite precipitation from a high salinity water[J]. Applied Geochemistry, 13(2): 177-184. doi: 10.1016/S0883-2927(97)00061-9

    CrossRef Google Scholar

    [57] Zhang Y H, He Z H, Tian H H, et al. , 2021. Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China[J]. Environmental Earth Sciences, 80(17): 576. doi: 10.1007/s12665-021-09894-y

    CrossRef Google Scholar

    [58] 张云辉, 2018. 鲜水河断裂康定−磨西段地热系统成因及开发利用研究[D]: 成都理工大学.

    Google Scholar

    Zhang Y H, 2018. Research on genesis and development of the geothermal system in the Kangding−Moxi segment of the Xianshuihe fault[D]: Chengdu University of Technology.

    Google Scholar

    [59] 张云辉, 李晓, 许模, 等, 2021. 鲜水河地热带道孚地区地热水水文地球化学特征研究[J]. 安全与环境工程, 28(3): 42-51

    Google Scholar

    Zhang Y H, Li X, Xu M, et al, 2021b. Hydrogeochemical Characteristics of Geothermal Waters in the Daofu Area of the Xianshuihe Geothermal Belt[J]. Safety and Environmental Engineering, 28(3): 42-51.

    Google Scholar

    [60] Zhang, Y., Farquhar, R., 2001. Laboratory determination of calcium carbonate scaling rates for oilfield wellbore environments. In: Proceedings of International Symposium on Oilfield Scale. Society of Petroleum Engineers.

    Google Scholar

    [61] Zhang Y P, Shaw H, Farquhar R, et al. , 2001. The kinetics of carbonate scaling—application for the prediction of downhole carbonate scaling[J]. Journal of Petroleum Science Engineering, 29(2): 85-95. doi: 10.1016/S0920-4105(00)00095-4

    CrossRef Google Scholar

    [62] Zhang Y H, Xu M, Li X, et al. , 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China[J]. Water, 10(1): 80. doi: 10.3390/w10010080

    CrossRef Google Scholar

    [63] 赵斌, 吕玥, 温柔, 等, 2023. 西藏地热能开发利用现状及发展前景[J]. 热力发电: 52(1): 1 − 6

    Google Scholar

    Zhao B, Lyu Y, Wen R, et al., 2023. Utilization situation and development prospect of geothermal energy in Tibet[J]. Thermal Power Generation: 52(1): 1 − 6.

    Google Scholar

    [64] 赵友年, 1981. 从鲜水河断裂带演化史谈鲜水河雁行式断裂带与地震活动的关系[J]. 四川地震, (3): 10-14

    Google Scholar

    Zhao Y N, 1981. Discussion on the relationship between the Xianshuihe en echelon fracture fracture and seismic activity from the evolution history of Xianshuihe fracture[J]. Earthquake Research in Sichuan, (3): 10-14.

    Google Scholar

    [65] 朱家玲, 姚涛, 2004. 地热水腐蚀结垢趋势的判断和计算[J]. 工业用水与废水, 35(2): 23-25 doi: 10.3969/j.issn.1009-2455.2004.02.007

    CrossRef Google Scholar

    Zhu J L, Yao T, 2004. Judgement and Calculation of Trend of Corrosion and Scaling of Geothermal Water[J]. Industaial Waters & Wastewaters, 35(2): 23-25. doi: 10.3969/j.issn.1009-2455.2004.02.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1952) PDF downloads(216) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint