2023 Vol. 43, No. 2
Article Contents

ZHAN Haipeng, GUO Qinghai. 2023. Speciation of arsenic and antimony in geothermal water affected by their competitive hiolation: A case study in several typical Ali hydrothermal areas, Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 442-451. doi: 10.19826/j.cnki.1009-3850.2023.05002
Citation: ZHAN Haipeng, GUO Qinghai. 2023. Speciation of arsenic and antimony in geothermal water affected by their competitive hiolation: A case study in several typical Ali hydrothermal areas, Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 442-451. doi: 10.19826/j.cnki.1009-3850.2023.05002

Speciation of arsenic and antimony in geothermal water affected by their competitive hiolation: A case study in several typical Ali hydrothermal areas, Tibet

More Information
  • Arsenic and antimony are typical harmful constituents in geothermal water, in which they usually show different speciationfrom other types of natural waters, as a result of the unique hydrochemical conditions there. With the Langjiu, Quseyongba, Menshi and Moluojiang geothermal areas in Ali, Tibet asthe study areas,, the arsenic and antimony speciation in the sulfide-bearing geothermal waters under the influence of competitive thiolation between their oxyanions was investigated. Owing toinput of arsenic- and antimony-rich magmatic fluids and/or enhanced leaching of reservoir hostrocks at elevated temperature, the arsenic and antimony concentrations in the geothermal waters discharged from the sehydrothermal areas range from 5833 to 20750 μg/L and from 579 to 2129 μg/L, respectively. Arsenite and arsenate are the main species of arsenic in the geothermal waters, but thioarsenates exist as well with their proportions in total arsenic ranging from 0.1 to 55.1%. Different from arsenic, the species of antimony in all the geothermal water samples are antimonite and/or antimonatewith thioantimonates being undetected. Considering that the S/Sb molar ratios of a large part of the geothermal waters are high enough for formation of thioantimonates and that arsenic in all the samples is more enriched than antimony to varying degrees, we concluded that thiolation of antimony oxyanions in the geothermal waters was strongly inhibited by coexisting arsenic oxyanions. Provided that there were no a large excess of sulfide over the sum of arsenic and antimony in geothermal water, competitive thiolation of arsenic oxyanions would be the most critical factor impeding formation of thioantimonates. The present work and the results obtained in this study would be helpful for an in-depth understanding of the environmental geochemical behaviour of arsenic and antimony in geothermal water environments in Tibet.

  • 加载中
  • [1] Boreiko C J, Rossman T G, 2020. Antimony and its Compounds: Health Impacts Related to Pulmonary Toxicity, Cancer, and Genotoxicity [J]. Toxicology and Applied Pharmacology, 403: 115156

    Google Scholar

    [2] Couture R M , Rose J , Kumar N, et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation[J]. Environmental Science & Technology, 47(11): 5652 − 5659.

    Google Scholar

    [3] 丁爱中, 杨双喜, 张宏达, 2007. 地下水砷污染分析[J]. 吉林大学学报(地球科学版), 37(2): 319-325

    Google Scholar

    Ding A Z, Yang S X, Zhang H D, 2007. Arsenic contamination analysis of groundwater[J]. Journal of Jilin University Sciences (Earth Sciences), 37(2): 319-325.

    Google Scholar

    [4] Ellis A J, Mahon W A J, 1964. Natural Hydrothermal System s and Experimental Hot Water/rock Interactions (Part II)[J]. Geochimica et Cosmochimica Acta, 31(4): 519−538.

    Google Scholar

    [5] Guo Q, Planer-Friedrich B, Luo L, et al. , 2020. Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments[J]. Environmental Pollution, 266: 115221. doi: 10.1016/j.envpol.2020.115221

    CrossRef Google Scholar

    [6] Guo Q, Planer-Friedrich B, Liu M, et al. , 2017. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China[J]. Chemical Geology, 453: 12-20. doi: 10.1016/j.chemgeo.2017.02.010

    CrossRef Google Scholar

    [7] Guo Q, Planer−Friedrich B, Liu M, et al. 2017b. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China[J]. Chemical Geology, 453: 12 − 20.

    Google Scholar

    [8] Guo Q, Planer−Friedrich B, Liu M, et al. 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters[J]. Chemical Geology , 513: 32 − 43.

    Google Scholar

    [9] 郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 94(12): 3544 − 3554.

    Google Scholar

    Guo Q H, 2020. Magmatic heat source type geothermal system and its hydrogeochemical criteria[J]. Acta Geologica Sinica, 94(12): 3544 − 3554 (in Chinese with English abstract).

    Google Scholar

    [10] 郭清海, 杨晨 2021. 西藏搭格架高温热泉中钨的水文地球化学异常[J]. 地球科学, 46(7): 2544 − 2554

    Google Scholar

    Guo Q H, Yang C, 2021. Hydrogeochemical anomalies of tungsten in high−temperature hot springs in Tibet[J]. Earth Science, 46(7): 2544 − 2554(in Chinese with English abstract).

    Google Scholar

    [11] 郭清海, 孟越, 严克涛, 2023. 地热水中多种甲基硫代砷酸盐的同时定量测定[J]. 地球科学, 48(3): 1138

    Google Scholar

    Guo Q H, Meng Y, Yan K T, 2023. Simultaneous quantitative determination of multiple methyl thioarsenates in geothermal water [J] Earth Science, 48(3): 1138(in Chinese with English abstract).

    Google Scholar

    [12] Hinrichsen S, Geist F, Planer-Friedrich B, 2015. Inorganic and methylated thioarsenates pass the gastrointestinal barrier[J]. Chemical Research in Toxicology, 28(9): 1678-1680. doi: 10.1021/acs.chemrestox.5b00268

    CrossRef Google Scholar

    [13] 廖忠礼, 廖光宇, 潘桂棠, 等, 2005. 西藏阿里地热资源的分布特点及开发利用[J]. 中国矿业, 14(8): 43 − 46

    Google Scholar

    Liao Z L, Liao G Y, Pan G T, et al., 2005. Distribution characteristics, development and utilization of geothermal resources in Ali, Tibet [J] China Mining, 14(8): 43 − 46.

    Google Scholar

    [14] 刘洪, 黄瀚霄, 张林奎, 李光明, 欧阳渊, 黄勇, 吕梦鸿, 兰双双, 2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金)矿点的发现及意义[J]. 沉积与特提斯地质, 41(4): 599-611

    Google Scholar

    Liu H, Huang H X, Zhang L K, Li G M, Ouyang Y, Huang Y, Lu M H, Lan S S, 2021. Discovery and significance of the Late Triassic porphyry copper (gold) occurrences at Lurma in the western section of the Tibetan Gangdis mineralization belt[J]. Sedimentary and Tethys Geology, 41(4): 599-611.

    Google Scholar

    [15] Naranmandura H, Carew M W, Xu S, et al. , 2011. Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells[J]. Chemical research in toxicology, 24(9): 1586-1596. doi: 10.1021/tx200291p

    CrossRef Google Scholar

    [16] 潘敖然, 2019. 高砷地下水中硫代砷形态分布及其吸附行为特征[D]. 桂林理工大学.

    Google Scholar

    Pan A R, 2019. The speciation distribution and adsorption behavior characteristics of thioarsenic in high−arsenic groundwater [D] Guilin University of Technology, 2019(in Chinese).

    Google Scholar

    [17] 潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾, 进展与展望[J]. 沉积与特提斯地质, 42(2): 151-175

    Google Scholar

    Pan G T, Wang L Q, Yin F G, et al. , 2022. Researches on geological-tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future[J]. Sedimentary and Tethys Geology, 42(2): 151-175.

    Google Scholar

    [18] Planer-Friedrich B, Scheinost A C, 2011. Formation and structural characterization of thioantimony species and their natural occurrence in geothermal waters[J]. Environmental science & technology, 45(16): 6855-6863.

    Google Scholar

    [19] Planer-Friedrich B, Forberg J, Lohmayer R, et al. , 2020. Relative abundance of thiolated species of As, Mo, W, and Sb in hot springs of Yellowstone National Park and Iceland[J]. Environmental Science & Technology, 54(7): 4295-4304.

    Google Scholar

    [20] Planer-Friedrich B, London J, McCleskey R B, et al. , 2007. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental science & technology, 41(15): 5245-5251.

    Google Scholar

    [21] Planer-Friedrich B, Wilson N, 2012. The stability of tetrathioantimonate in the presence of oxygen, light, high temperature and arsenic[J]. Chemical Geology, 322: 1-10.

    Google Scholar

    [22] Smedley P L, Kinniburgh D G, 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5

    CrossRef Google Scholar

    [23] 宋泓禹, 郭清海, 2023. 典型高温热泉中锑的形态分布及其地球化学成因[J]. 地球科学, 48(3), 946 − 957

    Google Scholar

    Song H Y, Guo Q H, 2023. Morphological distribution of antimony in typical high−temperature hot springs and its geochemical genesis [J]. Earth Science, 48(3), 946 − 957.

    Google Scholar

    [24] Sun S, Xie X, Li J, et al. , 2020. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 590: 125268. doi: 10.1016/j.jhydrol.2020.125268

    CrossRef Google Scholar

    [25] 佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志. 北京: 科学出版社.

    Google Scholar

    Tong W, Liao Z J, Liu S B, et al., 2000. Records of Tibetan Hot Springs Beijing: Science Press(in Chinese)

    Google Scholar

    [26] Ullrich M K, Pope J G, Seward T M, et al. , 2013 Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand[J]. Journal of volcanology and geothermal research, 262: 164-177. doi: 10.1016/j.jvolgeores.2013.07.007

    CrossRef Google Scholar

    [27] 王立全, 王保弟, 李光明, 等, 2021. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 41(2): 283-296

    Google Scholar

    Wang L Q, Wang B D, Li G M, et al. , 2021. A review of the progress of geological investigations in the Eastern Tethys[J]. Sedimentary and Tethys Geology, 41(2): 283-296.

    Google Scholar

    [28] 王冠, 陶晓风, 2009. 西藏阿里地区多桑地堑的构造特征及成因机制[J]. 沉积与特提斯地质, 29(1): 46-52

    Google Scholar

    Wang G, Tao X F, 2009. Structural features and genetic mechanism of the Duosang graben in the Ali area, Tibet[J]. Sedimentary and Tethys Geology, 29(1): 46-52.

    Google Scholar

    [29] Webster J G, Nordstrom D K. , 2003 Geothermal arsenic: The source, transport and fate of arsenic in geothermal systems[J]. Arsenic in ground water: geochemistry and occurrence, 31: 101-125.

    Google Scholar

    [30] 解超明, 李才, 李光明, 等, 2020. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 40(2): 1-13

    Google Scholar

    Xie C M, Li C, Li G M, et al. , 2020. The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet[J]. Sedimentary and Tethys Geology, 40(2): 1-13.

    Google Scholar

    [31] 严克涛, 郭清海, 刘明亮, 2019. 西藏搭格架高温热泉中砷的地球化学异常及其存在形态[J]. 吉林大学学报(地球科学版), 49(2): 548-558

    Google Scholar

    Yan K T, Guo Q H, Liu M L, 2019 Geochemical anomaly and existing form of arsenic in Tagejia hot spring, Tibet[J]. Journal of Jilin University (Earth Science Edition), 49(2): 548-558

    Google Scholar

    [32] 张梦昭, 郭清海, 刘明亮, 等, 2023. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学, 48(3), 973 − 987

    Google Scholar

    Zhang M Z, Guo Q H, Liu M L, et al., 2023. Geochemical characteristics and genetic mechanism of geothermal water in Xinzhou Basin, Shanxi Province[J]. Earth Science, 48(3), 973 − 987.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(962) PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint