2023 Vol. 43, No. 2
Article Contents

YUAN Jianfei, DENG Guoshi, LIU Huizhong. 2023. Characteristics of rare earth elements in boron-rich thermal waters of the Xianshuihe Fault Belt Zone and its indication to the sources of boron. Sedimentary Geology and Tethyan Geology, 43(2): 428-441. doi: 10.19826/j.cnki.1009-3850.2023.04002
Citation: YUAN Jianfei, DENG Guoshi, LIU Huizhong. 2023. Characteristics of rare earth elements in boron-rich thermal waters of the Xianshuihe Fault Belt Zone and its indication to the sources of boron. Sedimentary Geology and Tethyan Geology, 43(2): 428-441. doi: 10.19826/j.cnki.1009-3850.2023.04002

Characteristics of rare earth elements in boron-rich thermal waters of the Xianshuihe Fault Belt Zone and its indication to the sources of boron

  • Geothermal water of high-temperature geothermal system is generally rich in high concentration of boron (B), and the research on B sources has been a hot topic for geothermal geologists. Although many researchers have conducted extensive research on the formation mechanism of high B geothermal water, it is unclear whether characteristics and migration laws of rare earth elements (REEs) in B-rich geothermal water can illustrate B sources in geothermal water. Our study focused on the B-rich geothermal water in the Xianshuihe Fault Belt Zone (XSHFZ) to explore the distribution and migration rules of B and REEs by combining with field survey and sampling, laboratory testing, hydrogeochemical modeling, and comprehensive analysis. The results showed that the maximum value of B in geothermal water was 10.50 mg/L, and the content of B in 90% of geothermal water samples was higher than 0.5 mg/L (China standard values for drinking water). The ∑REE value was 0.08-3.49 μg/L, mainly existed in the complex form of LnCO3+ and Ln(CO3)2. PAAS-normalized model and (Nd/Yb)SN value of geothermal water in the XSHFZ showed that HREEs is enriched relative to LREEs, with significant positive Eu (an average value of δEu was 0.34) and Ce (an average value of δCe was 0.07) anomaly. Dissolving felsic mineral and carbonate rock controlled the migration of B and REEs in geothermal water. The geochemical characteristics of REEs in geothermal water can expound B's enrichment process in geothermal water to a certain extent. Our research results can expand the application of REEs in the study of B-rich geothermal water and provide a basis for illustrating the genesis study of B-rich geothermal water in similar areas.

  • 加载中
  • [1] 陈维, 葛璐, 谭红兵, 2022. 西藏谷露—亚东裂谷南部温泉稀土元素特征及其控制因素[J]. 地质论评, 68(04): 1464-1479 doi: 10.16509/j.georeview.2022.04.035

    CrossRef Google Scholar

    Chen W, Ge L, Tan H B, 2022. Rare earth element characteristics and controlling factors of hot springs in the Gulu-Yadong rift, Xizang (Tibet) [J]. Geologgical Review, 68(04): 1464-1479. doi: 10.16509/j.georeview.2022.04.035

    CrossRef Google Scholar

    [2] 樊连杰, 裴建国, 卢丽, 等, 2018. 桂林寨底地下河系统中地下水稀土元素含量及分异特征[J]. 中国稀土学报, 36(02): 247-256

    Google Scholar

    Fan L J, Pei J G, Lu L, et al. , 2018. Concentrations and Patterns of Rare Earth Elements in Groundwater from Zhaidi Underground River in Guilin [J]. Journal of the Chinese Society of Rare Earths, 36(02): 247-256.

    Google Scholar

    [3] 樊连杰, 邹胜章, 解庆林, 等, 2021. 云南鹤庆盆地岩溶地下水稀土元素地球化学特征[J]. 中国稀土学报, 39(05): 805-815

    Google Scholar

    Fan L J, Zou S Z, Xie Q L, et al. , 2021. Rare Earth Element Geochemical Characteristics of Karst Groundwater in Heqing Basin, Yunnan Province [J]. Journal of the Chinese Society of Rare Earths, 39(05): 805-815.

    Google Scholar

    [4] Gill L W, Babechuk M G, Kamber B S, et al. , 2018. Use of trace and rare earth elements to quantify autogenic and allogenic inputs within a lowland karst network[J]. Applied Geochemistry, Vol. 90: 101-114. doi: 10.1016/j.apgeochem.2018.01.001

    CrossRef Google Scholar

    [5] 桂和荣, 孙林华, 2011. 皖北任楼煤矿深层地下水稀土元素地球化学特征[J]. 煤炭学报, 36(02): 210-216 doi: 10.13225/j.cnki.jccs.2011.02.001

    CrossRef Google Scholar

    Gui H R, and Sun L H, 2011. Rare earth element geochemical characteristics of the deep underground water from Renlou Coal Mine, Northern Anhui Province [J]. Journal of China Coal Society, 36(02): 210-216. doi: 10.13225/j.cnki.jccs.2011.02.001

    CrossRef Google Scholar

    [6] Guilin Han K Y, Jie Zeng, 2022. Spatio-Temporal Distribution and Environmental Behavior of Dissolved Rare Earth Elements (REE) in the Zhujiang River, Southwest China[J]. Bulletin of environmental contamination and toxicology, Vol. 108(No. 3): 555-562. doi: 10.1007/s00128-022-03459-w

    CrossRef Google Scholar

    [7] Guo Q, 2012. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 27(10): 1887-1898. doi: 10.1016/j.apgeochem.2012.07.006

    CrossRef Google Scholar

    [8] Guo Q, Liu M, Li J, et al. , 2017a. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China[J]. Journal of Geochemical Exploration, 172: 109-119. doi: 10.1016/j.gexplo.2016.10.012

    CrossRef Google Scholar

    [9] Guo Q, Pang Z, Wang Y, et al. , 2017b. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [10] 郭清海, 张晓博, 2022. 高温热泉中稀土元素的地球化学行为及其指示意义: 以西藏搭格架热水区为例[J]. 地质科技通报, 41(5): 172-180

    Google Scholar

    Guo Q, Zhang X, 2022. Geochemiccal behavior of rare earth elements in high-temperature hot springs and its implication: A case study in the Daggyai hydrothermal area, Tibet [J]. Bulletin of Geological Science and Technology, 41(5): 172-180.

    Google Scholar

    [11] Han G, Yang K, Zeng J, 2021. Distribution and fractionation of rare earth elements in suspended sediment of the Zhujiang River, Southwest China[J]. Journal of Soils and Sediments, Vol. 21(No. 8): 2981-2993. doi: 10.1007/s11368-021-03008-8

    CrossRef Google Scholar

    [12] Katsanou K, Siavalas G, Panagopoulos G, et al. , 2022. Rare earth element patterns in a rapidly changing karst environment[J]. Applied Geochemistry, 146: 105462. doi: 10.1016/j.apgeochem.2022.105462

    CrossRef Google Scholar

    [13] Li B, Kong Q, Wang G, et al. , 2022. Controls on the behaviors of rare earth elements in acidic and alkaline thermal springs[J]. Applied Geochemistry, Vol. 143: 105379. doi: 10.1016/j.apgeochem.2022.105379

    CrossRef Google Scholar

    [14] Li J, Yang G, Sagoe G, et al. , 2018. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 75: 154-163. doi: 10.1016/j.geothermics.2018.04.008

    CrossRef Google Scholar

    [15] 李午阳, 张健, 唐显春, 等, 2018. 川西高温水热活动区深部热结构的地球物理分析[J]. 地球物理学报, 61(07): 2926-2936

    Google Scholar

    Li W Y, Zhang J, Tang X C, et al. , 2018. The deep geothermal structure of high-temperature hydrothermal activity region in western Sichuan Plateuu: a geophysical study [J]. Chinese Journal of Geophysics, 61(07): 2926-2936.

    Google Scholar

    [16] 李晓, 王金金, 黄珣, 等, 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征[J]. 成都理工大学学报(自然科学版), 45(06): 733-745 doi: 10.3969/j.issn.1671-9727.2018.06.09

    CrossRef Google Scholar

    Li X, Wang J J, Huang X, et al. , 2018. Chemical and isotopic characteristics of hot water in the Kangding-Daofu section of Xianshuihe fault zone, Sichuan, China [J]. Journal of Chengdu University of Technology (Science and Technology Edition), 45(06): 733-745. doi: 10.3969/j.issn.1671-9727.2018.06.09

    CrossRef Google Scholar

    [17] 林秋婷, 陈晨, 刘海洋, 2020. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 36(01): 5-12 doi: 10.18654/1000-0569/2020.01.02

    CrossRef Google Scholar

    Lin Q T, Chen C, and Liu H Y, 2020. Boron prospecting based on boron cycling in subduction zone [J]. Acta Petrologica Sinica, 36(01): 5-12. doi: 10.18654/1000-0569/2020.01.02

    CrossRef Google Scholar

    [18] 刘海燕, 刘茂涵, 张卫民, 等, 2022. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 29(03): 129-144 doi: 10.13745/j.esf.sf.2021.7.24

    CrossRef Google Scholar

    Liu H Y, Liu M H, Zhang W M, et al. , 2022. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 29(03): 129-144. doi: 10.13745/j.esf.sf.2021.7.24

    CrossRef Google Scholar

    [19] Liu M, Guo Q, Luo L, et al. , 2020. Environmental impacts of geothermal waters with extremely high boron concentrations: Insight from a case study in Tibet, China[J]. Journal of Volcanology and Geothermal Research, 397: 106887. doi: 10.1016/j.jvolgeores.2020.106887

    CrossRef Google Scholar

    [20] Liu M, Guo Q, Wu G, et al. , 2019. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009

    CrossRef Google Scholar

    [21] 刘明亮, 正安婷, 尚建波, 等, 2022. 高温地热流体中硼的地球化学研究进展[J]. 地球科学: 1 − 25. 网络首发: https://kns.cnki.net/kcms/detail/42.1874.P.20220711.0927.002.html.

    Google Scholar

    Liu M L, Zheng A T, Shang J B, et al, 2022. Progress in study of boron geochemistry in high temperature geothermal fluids [J]. Earth Science, 1 − 25. https://kns.cnki.net/kcms/detail/42.1874.P.20220711.0927.002.html

    Google Scholar

    [22] Liu W, Guan L, Liu Y, et al. , 2022. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 607: 127554. doi: 10.1016/j.jhydrol.2022.127554

    CrossRef Google Scholar

    [23] Liu X, Gao W, Wei T, et al. , 2023. Distribution and sources of REEs in suspended particulate matter of cryospheric water in northeast Tibetan plateau[J]. Applied Geochemistry, 148: 105536. doi: 10.1016/j.apgeochem.2022.105536

    CrossRef Google Scholar

    [24] 马莉, 刘茜, 何会军, 等, 2021. 大沽河流域地下水中稀土元素的地球化学特征[J]. 海洋学研究, 39(02): 33-42 doi: 10.3969/j.issn.1001-909X.2021.02.004

    CrossRef Google Scholar

    Ma L, Liu Q, He H J, et al. , 2021. Geochimistry of rare earth elements in the groundwater of Dagu River Basin [J]. Journal of Marine Science, 39(02): 33-42. doi: 10.3969/j.issn.1001-909X.2021.02.004

    CrossRef Google Scholar

    [25] Ogawa Y, Ishiyama D, Shikazono N, et al. , 2019. Fractionation of rare earth elements (REEs) and actinides (U and Th) originating from acid thermal water during artificial and natural neutralization processes of surface waters[J]. Geochimica et Cosmochimica Acta, 249: 247-262. doi: 10.1016/j.gca.2019.01.030

    CrossRef Google Scholar

    [26] 潘家伟, 李海兵, CHEVALIER M-L, et al. , 2020. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂[J]. 地质学报, 94(11): 3178-3188 doi: 10.3969/j.issn.0001-5717.2020.11.002

    CrossRef Google Scholar

    Pan J W, Li H B, CHEVALIER M-L, et al. , 2020. A newly discovered active fault on the Selaha-Kangding segement along the SE Xianshuihe fault: South Mugecuo fault [J]. Acta Geological Sinica, 94(11): 3178-3188. doi: 10.3969/j.issn.0001-5717.2020.11.002

    CrossRef Google Scholar

    [27] Pitikakis E, Katsanou K, Panagopoulos G, et al. , 2022. Distribution of rare earth elements in groundwater resources from sedimentary rocks of Eastern Crete, Greece[J]. International Journal of Environmental Analytical Chemistry: 1 − 18.

    Google Scholar

    [28] Shakeri A, Ghoreyshinia S, Mehrabi B, et al. , 2015. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran[J]. Journal of Volcanology and Geothermal Research, 304: 49-61. doi: 10.1016/j.jvolgeores.2015.07.023

    CrossRef Google Scholar

    [29] 唐渊, 王鹏, 邓红, 等, 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 41(7): 1121-1143

    Google Scholar

    Tang Y, Wang P, Deng H, et al. , 2022. Petrological records of major tectono-magmatic events since Oligeocene in the southeastern segment of Xianshuihe fault zone in the eastern margine of Tibetan Plateau [J]. Geological Bulletin of China, 41(7): 1121-1143.

    Google Scholar

    [30] 王振, 郭华明, 刘海燕, 等, 2022. 贵德盆地高氟地下水稀土元素特征及其 指示意义[J]. 地学前缘: 1 − 13. https://doi.org/10.13745/j.esf.sf.2022.9.3

    Google Scholar

    Wang Z, Guo H M, Liu H Y, et al, 2022. Characteristics and implications of rare earth elements in high fluoride groundwater in Guide basin [J]. Earth Science Frontiers, 1 − 13. https://doi.org/10.13745/j.esf.sf.2022.9.3

    Google Scholar

    [31] Wei S, Liu F, Zhang W, et al. , 2022a. Typical geothermal waters in the Ganzi–Litang fault, western Sichuan, China: hydrochemical processes and the geochemical characteristics of rare-earth elements[J]. Environmental Earth Sciences, 81(23): 538. doi: 10.1007/s12665-022-10652-x

    CrossRef Google Scholar

    [32] Wei S, Wei S, Liu F, et al. , 2022b. Geochemical Characteristics of Rare Earth Elements in the Chaluo Hot Springs in Western Sichuan Province, China[J]. Frontiers in Earth Science, Vol. 10.

    Google Scholar

    [33] 谢先军, 王焰新, 李俊霞, 等, 2012. 大同盆地高砷地下水稀土元素特征及其指示意义[J]. 地球科学(中国地质大学学报), 37(02): 381-390

    Google Scholar

    Xie X J, Wang Y X, Li J X, et al. , 2012. Chracteristics and implications of rare earth elements in high arsenic groundwater from Datong Basin [J]. Earth Science-Journal of China University of Geoscience, 37(02): 381-390.

    Google Scholar

    [34] 袁建飞, 2010. 西藏羊八井高温地热田水环境中硼的迁移和转化研究[D]: 中国地质大学.

    Google Scholar

    Yuan J F, 2010. Transport of boron in the aquatic environment of the Yangbajing geothermal field, Tibet [D]. Wuhan: China University of Geoscience.

    Google Scholar

    [35] 袁建飞, 毛绪美, 王焰新, 2013. 珠江口东北部地下水稀土元素的无机形态[J]. 水文地质工程地质, 40(06): 14-21+36 doi: 10.16030/j.cnki.issn.1000-3665.2013.06.016

    CrossRef Google Scholar

    Yuan J F, Mao X M, and Wang Y X, 2013. Inorganic speciation of rare earth elements for groundwater in northeastern of the Pearl River dealt mouth, south China [J]. Hydrogeology and Engineering Geology, 40(06): 14-21+36. doi: 10.16030/j.cnki.issn.1000-3665.2013.06.016

    CrossRef Google Scholar

    [36] Yuan J, Guo Q, Wang Y, 2014a. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 140: 11-22. doi: 10.1016/j.gexplo.2014.01.006

    CrossRef Google Scholar

    [37] Yuan J, Mao X, Wang Y, et al. , 2014b. Geochemistry of rare-earth elements in shallow groundwater, northeastern Guangdong Province, China[J]. Chinese Journal of Geochemistry, Vol. 33(No. 1): 53-64. doi: 10.1007/s11631-014-0659-1

    CrossRef Google Scholar

    [38] 袁建飞, 邓国仕, 郑万模, 2017. 硼及硼同位素地球化学在地热研究中的应用[J]. 四川地质学报, 37(4): 686-691

    Google Scholar

    Yuan J F, Deng G S, and Zheng W M, 2017. The application of boron and its isotopic geochemistry to the study of geothermal process [J]. ACTA GEOLOGICA SICHUAN, 37(4): 686-691.

    Google Scholar

    [39] Yuan J, Xu F, Liu H, 2019. Chemical and isotopic compositions of boron in the geothermal waters in the Xianshuihe Fault Zone, Western Sichuan Province, China(Conference Paper)[C]. E3S Web of Conferences, Vol. 98.

    Google Scholar

    [40] Yuan J, Xu F, Zheng T, 2022. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province: Insight from hydrochemical and isotopic analysis[J]. Journal of Hydrology, 605: 127345. doi: 10.1016/j.jhydrol.2021.127345

    CrossRef Google Scholar

    [41] 张健, 李午阳, 唐显春, 等, 2017. 川西高温水热活动区的地热学分析[J]. 中国科学: 地球科学, 47(08): 899 − 915.

    Google Scholar

    Zhang J, Li W Y, Tang X C, et al. , 2017. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan [J]. Science China Earth Sciences, 60: 1507 − 1521

    Google Scholar

    [42] 张晓博, 郭清海, 张梦昭, 等, 2022. 碳酸盐岩热储中稀土元素的地球化学行为及其指示意义: 以施甸地热系统为例[J]. 地球科学: 1 − 23. https://kns.cnki.net/kcms/detail/42.1874.p.20220831.1608.002.html

    Google Scholar

    Zhang X B, Guo Q H, Zhang M Z, et al, 2022. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System [J]. Earth Science, 1 − 23. https://kns.cnki.net/kcms/detail/42.1874.p.20220831.1608.002.html

    Google Scholar

    [43] 张云辉, 2018. 鲜水河断裂康定−磨西段地热系统成因及开发利用研究[D]: 成都理工大学.

    Google Scholar

    Zhang Y H, 2018. Research on genesis and development of the geothermal system in the Kangding−Moxi segment of the Xianshuihe fault [D]. Chengdu: Chengdu University of Science and Technology.

    Google Scholar

    [44] Zhang Y, Zhou X, Liu H, et al. , 2020. Geochemistry of rare earth elements in the hot springs in the Simao Basin in southwestern China[J]. Environmental Earth Sciences, Vol. 79(No. 6): 1-10.

    Google Scholar

    [45] 赵庆生, 1984. 鲜水河断裂带热水水文地球化学特征及形成模式[J]. 成都科技大学学报, (02): 77-88

    Google Scholar

    Zhao Q S, 1984. The hydrogeochemical characteristics and forming model of hot water in the Xianshuihe fault zone [J]. Journal of Chengdu University of Science and Technology, (02): 77-88.

    Google Scholar

    [46] 郑天亮, 邓娅敏, 鲁宗杰, 等, 2017. 江汉平原浅层含砷地下水稀土元素特征及其指示意义[J]. 地球科学, 42(05): 693-706

    Google Scholar

    Zheng T L, Deng Y M, Lu Z J, et al. , 2017. Geochemistry and implications of rare earth elements in arsenic-affected shallow aquifer from Jianghan Plain, central China [J]. Earth Science, 42(05): 693-706.

    Google Scholar

    [47] Zheng T, Lin H, Deng Y, et al. , 2023. Hydrogeochemical processes regulating the enrichment and migration of As and B from the river sediments in the Singe Tsangpo River Bain, Western Tibetan plateau[J]. Applied Geochemistry, 148: 105549. doi: 10.1016/j.apgeochem.2022.105549

    CrossRef Google Scholar

    [48] 周海玲, 苏春利, 李俊霞, 等, 2017. 大同盆地沉积物REE分布特征及其对碘富集的指示[J]. 地球科学, 42(02): 298-306

    Google Scholar

    Zhou H L, Sun C L, Li J X, et al. , 2017. Characteristics of rare earth elements in the sediments of the Datong Basin and its incication to the iodine enrichment [J]. Earth Science, 42(02): 298-306.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(1252) PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint