2023 Vol. 43, No. 2
Article Contents

PENG Jie, XIE Yuan, PANG Weihua, REN Guangming, CUI Xiaozhuang, REN Fei, CHEN Fenglin, LIU Xingyu. 2023. New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance. Sedimentary Geology and Tethyan Geology, 43(2): 452-464. doi: 10.19826/j.cnki.1009-3850.2022.06013
Citation: PENG Jie, XIE Yuan, PANG Weihua, REN Guangming, CUI Xiaozhuang, REN Fei, CHEN Fenglin, LIU Xingyu. 2023. New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance. Sedimentary Geology and Tethyan Geology, 43(2): 452-464. doi: 10.19826/j.cnki.1009-3850.2022.06013

New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance

More Information
  • The Kangdian rift on the western margin of the Yangtze Plateau is one of the main components of the Neoproterozoic rift system in South China, which is of great significance for understanding the response between the evolution of the Neoproterozoic rift basin in South China and the breakup of the Rodinia supercontinent. The Chengjiang Formation is the most typical filling sequence in the Kangdian rift, and the accurate definition of its sedimentary age is an important prerequisite for the interpretation of the basin evolution in the context of the breakup of the Rodinia supercontinent. LA-ICP-MS zircon U-Pb dating of the volcanic rocks of the Chengjiang Formation in the Qiaojiaweigu area, northeastern Yunnan, yielded an age of 806.4±6.7 Ma for the basalt at the bottom of the Chengjiang Formation and an age of 788.4±5.9 Ma for the tuff at the bottom. Combined with the available age data, the sedimentary age of the Chengjiang Formation is accurately defined as 800~720 Ma, which is a contemporaneous heterogeneous product with the Kaijianqiao Formation and the upper part of the Luliang Formation. The evolution of the three secondary basins in the Kangdian rift is basically synchronous, and they all began to receive full sedimentation at ~ 800 Ma, in response to the breakup of the Rodinia supercontinent.

  • 加载中
  • [1] Bose S, Das K, Torimoto J, et al. , 2016. Evolution of the Chilka Lake granulite complex, northern Eastern Ghats Belt, India: First evidence of ~780 Ma decompression of the deep crust and its implication on the India-Antarctica correlation[J]. Lithos, 263, 161-189.

    Google Scholar

    [2] Black L P, Seymour D B, Corbett K D, et al. , 1997. Dating Tasmania’s oldest geological events [J]. In: Canberra, ACT: Australian Geological Survey Organisation Record, 15: 57.

    Google Scholar

    [3] Brandt S, Raith M M, Schenk V, et al. , 2014. Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites [J]. Precambrian Research, 246, 91-122.

    Google Scholar

    [4] Calver C R, Meffre S, Everard J L. , 2013. Felsic porphyry sills in Surprise bay formation near Currie, King island, dated at ~775 Ma (LA- ICPMS, U-Pb on zircon) [M]. Hobart, TAS: Tasmanian Geological Survey Record, 10.

    Google Scholar

    [5] Chatterjee A, Das K, Bose S, et al. , 2017. Zircon U-Pb SHRIMP and monazite EPMA U-Th-total Pb geochronology of granulites of the western boundary, Eastern Ghats Belt, India: a new possibility for Neoproterozoic exhumation history [J]. Geological Society, London, Special Publications, 457(1): 105-140. doi: 10.1144/SP457.1

    CrossRef Google Scholar

    [6] 崔晓庄, 江新胜, 王剑, 等, 2013. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J]. 现代地质, 27(3): 547-556 doi: 10.3969/j.issn.1000-8527.2013.03.005

    CrossRef Google Scholar

    Cui X Z, Jiang X S, Wang J, et al. , 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance[J]. Geoscience, 27 (3): 547-556 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.005

    CrossRef Google Scholar

    [7] 崔晓庄, 江新胜, 王剑, 等, 2014. 滇中新元古代裂谷盆地充填序列及演化模式: 对Rodinia超大陆裂解的响应[J]. 沉积学报, 32(3): 399-409 doi: 10.14027/j.cnki.cjxb.2014.03.004

    CrossRef Google Scholar

    Cui X Z, Jiang X S, Wang, J, et al. , 2014. Filling sequence and evolution model of the Neoproterozoic Rift Basin in central Yunnan Province, South China: Response to the breakup of Rodinia Supercontinent[J]. Acta Sedimentologica Sinca, 32 (3): 399-409 (in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2014.03.004

    CrossRef Google Scholar

    [8] 崔晓庄, 江新胜, 王剑, 等, 2015. 扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J]. 岩石矿物学杂志, 34(1): 1-13 doi: 10.3969/j.issn.1000-6524.2015.01.001

    CrossRef Google Scholar

    Cui X Z, Jiang X S, Wang J, et al. , 2015. New evidence for the formation age of basalts from the lowermost Chengjiang Formation in the western Yangtze Block and its geological implications[J]. Mineralogy and Petrology, 34(1): 1-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2015.01.001

    CrossRef Google Scholar

    [9] Dasgupta S, Bose S, Bhowmik S K, et al. , 2017. The Eastern Ghats Belt, India, in the context of supercontinent assembly [J]. Geological Society, London, Special Publications, 457(1): 87-104. doi: 10.1144/SP457.5

    CrossRef Google Scholar

    [10] 付坤荣, 2020. 康滇裂谷充填序列关键层位定年、沉积地质特征及其大地构造意义[D]. 中国地质大学(北京).

    Google Scholar

    Fu K R. 2020. Dating of the key formations, sedimentary geological characteristics and the tectonic significance of rift filling sequence in Kangdian Rift[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    Google Scholar

    [11] 高永娟, 林仕良, 秦雅东, 等, 2021. 扬子陆块西缘云南东川地区澄江组碎屑锆石U-Pb年龄、Hf同位素组成及其对物源和地壳演化的约束[J]. 地质通报, 40(11): 1943 − 1956

    Google Scholar

    Gao Y J, Lin S L, Qin Y D, et al. , 2021. U-Pb age and Hf isotope composition of detrital zircons from the Chengjiang Formation in Dongchuan area, Yunnan Province of the western Yangtze Block and its constraints on provenance and crustal evolution[J]. Geoligical Bulletin of China. 40(11): 1943 − 1956 (in Chinese with English abstract).

    Google Scholar

    [12] Ghosh J G, deWit M J, Zartman R E. 2004. Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies[J]. Tectonics, 23(3): 1 − 38.

    Google Scholar

    [13] Harlan S S, Heaman L M, LeCheminant A N, et al. , 2003. Gunbarrel mafic magmatic event: a key 780 Ma time marker for Rodinia plate reconstructions[J]. Geology, 31(12), 1053-1056.

    Google Scholar

    [14] 江新胜, 王剑, 崔晓庄, 等, 2012. 滇中新元古代澄江组锆石SHRIMPU-Pb年代学研究及其地质意义[J]. 中国科学: 地球科学, 42(10): 1496 − 1507.

    Google Scholar

    Jiang X S, Wang J, Cui X Z, et al. , 2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province (SW China) and its geological significance[J]. Sci China Earth Sci, 55: 1815 − 1826 (in Chinese with English abstract).

    Google Scholar

    [15] 江卓斐, 2016. 扬子西缘新元古代冰川启动时间、期次及其构造-岩相古地理演化[D]. 中国地质大学(北京).

    Google Scholar

    Jiang Z F. 2016. Onset time and periods of the Neoproterozoic glaciers in western Yangtze Block and the tectonic-lithofacies palaeogeography[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    Google Scholar

    [16] Jing X Q, Evans D A, Yang Z Y, et al. , 2021. Inverted South China: A novel configuration for Rodinia and its breakup[J]. Geology, 49(4): 463- 467. doi: 10.1130/G47807.1

    CrossRef Google Scholar

    [17] 李世麟, 郑发模, 1984. 四川西南部震旦系研究. 四川西南部震旦系的岩性特征及沉积环境[J]. 成都地质学院学报, S1: 50 − 79+93 − 95

    Google Scholar

    Li S L, Zheng F M, 1984. The lithological characteristics and sedimentary environments of Sinian in Southwest Sichuan[J]. Journal of Chengdu Institute of Geology, S1: 50 − 79+93 − 95 (in Chinese with English abstract).

    Google Scholar

    [18] Li X H, Li Z X, Zhou H W, et al. , 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia[J]. Precambrian Research, 113(1-2): 135-154. doi: 10.1016/S0301-9268(01)00207-8

    CrossRef Google Scholar

    [19] Li X H, Li Z X, Ge W C, et al. , 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 122(1-4): 45-83. doi: 10.1016/S0301-9268(02)00207-3

    CrossRef Google Scholar

    [20] Li Z X, Li X H, Kinny P D, et al. , 1999. The breakup of Rodinia : did it start with a mantle plume beneath South China? [J]. Earth and Planetary Science Letters, 173(3): 0-181.

    Google Scholar

    [21] Li Z X, Li X H, Kinny P D, et al. , 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents : evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1): 85-109.

    Google Scholar

    [22] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160: 179-210. doi: 10.1016/j.precamres.2007.04.021

    CrossRef Google Scholar

    [23] 刘鸿允, 1991. 中国震旦系[M]. 北京: 科学出版社, 1-388

    Google Scholar

    Liu H Y, 1991. Sinian System in China [M]. Beijing: Science Press, 1-388 (in Chinese with English abstract).

    Google Scholar

    [24] 刘军平, 夏彩香, 孙柏东, 等, 2019. 滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 39(1): 14-21 doi: 10.3969/j.issn.1009-3850.2019.01.002

    CrossRef Google Scholar

    Liu J P, Xia C X, Sun, B D, et al. , 2019. Tuffs from the Neoproterozoic Chengjiang Formation in the Yimen region, central Yunnan: Zircon U-Pb dating and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 39(1): 14-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2019.01.002

    CrossRef Google Scholar

    [25] 刘石磊, 崔晓庄, 汪长林, 等, 2020. 扬子西缘新元古代中期裂谷作用: 来自年代学与沉积学的新证据[J]. 中国科学: 地球科学, 45(8): 3082 − 3093

    Google Scholar

    Liu S L, Cui X Z, Wang C L, et al., 2020. New sedimentological and geochronological evidence for mid-Neoproterozoic rifting in western Yangtze Block, South China. Earth Science, 45(8): 3082 − 3093 (in Chinese with English abstract).

    Google Scholar

    [26] Liu Y S, Hu Z C, Zong K Q, et al. , 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [27] 陆俊泽, 江新胜, 王剑, 等, 2013. 滇东北巧家地区新元古界澄江组SHRIMP锆石U-Pb年龄及其地质意义[J]. 矿物岩石, 33(2): 65-71 doi: 10.19719/j.cnki.1001-6872.2013.02.010

    CrossRef Google Scholar

    Lu J Z, Jiang X S, Wang J, et al. , 2013. SHIMP zircon U-Pb age and its geological significance of Neoproterozoic Chengjiang Formation in Qiaojia area, Northeast Yunnan[J]. J Mineral Petrol, 33(2): 65-71 (in Chinese with English abstract). doi: 10.19719/j.cnki.1001-6872.2013.02.010

    CrossRef Google Scholar

    [28] Ludwig K R 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication. No. 4.

    Google Scholar

    [29] 马搏杰, 2019. 康滇北部开建桥组沉积地质特征及其盆地动力学意义[D]. 中国地质大学(北京).

    Google Scholar

    Ma B J, 2019. Onset Time and Periods of the Neoproterozoic Glaciers in Western Yangtze Block and theTectonic-lithofacies Palaeogeograph[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    Google Scholar

    [30] Mulder J A, Everard J L, Cumming G, et al., 2020. Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia[J], Earth-Science Reviews, 201: 103041.

    Google Scholar

    [31] Park J K, Buchan K L, Harlan S S. , 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America[J]. Earth and Planetary Science Letters, 132 (1-4), 129-139.

    Google Scholar

    [32] Plavsa D, Collins A S, Foden J F, et al. , 2012. Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block[J]. Precambrian Research, 198, 77-93.

    Google Scholar

    [33] Ranjan S, Upadhyay D, Abhinay K, et al. , 2018. Zircon geochronology of deformed alkaline rocks along the Eastern Ghats Belt margin: India-Antarctica connection and the Enderbia continent[J]. Precambrian Research, 310, 407-424.

    Google Scholar

    [34] 孙家聪, 1985. 云南罗次澄江组下部火山岩系的发现与震旦系底界年龄的讨论[J]. 地质科学, (4): 354-363

    Google Scholar

    Sun J C, 1985. Discovery of the volcanic rock series in the Chengjiang Formation at Luoci area and discussion on the age of the basal limit of the Sinian system, Yunnan[J]. Scientia Geologica Sinica, (4): 354-363 (in Chinese with English abstract).

    Google Scholar

    [35] Turner N J, Black L P, Kamperman M, 1998. Dating of Neoproterozoic and Cambrian orogenies in Tasmania[J]. Aust. J. Earth Sci, 45: 789-806. doi: 10.1080/08120099808728433

    CrossRef Google Scholar

    [36] Wang J, Li Z X, 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up[J]. Precambrian Research, 122(1-4): 0-158.

    Google Scholar

    [37] 王剑, 2000. 华南新元古代裂谷盆地演化: 兼论与Rodinia解体的关系[M]. 北京: 科学出版社, 1-131.

    Google Scholar

    Wang J, 2000. Evolution of the Neoproterozoic rift basin in South China: Implications for the disintegration of Rodinia[M]. Beijing: Science Press (in Chinese with English abstract).

    Google Scholar

    [38] 王剑, 江新胜, 卓皆文, 等, 2019. 华南新元古代裂谷盆地演化与岩相古地理[M]. 北京: 科学出版社.

    Google Scholar

    Wang J, Jiang X S, Zhuo J W, et al. , 2019. Neoproterozoic rift basin evolution and lithofacies paleogeography in South China[M]. Beijing: Science Press (in Chinese with English abstract).

    Google Scholar

    [39] Wang W, Cawood P A, Zhou M F, et al. , 2017. Low δ18O rhyolites from the Malani igneous suite: A positive test for South China and NW India linkage in Rodinia[J]. Geophysical Research Letters, 44(20): 10-298.

    Google Scholar

    [40] Wang X L, Zhou J C, Qiu J S, et al. , 2004. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 135(1-2): 0-103.

    Google Scholar

    [41] Wang X C, Li X H, Li W X, et al. , 2009. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rock s in South China: A review[J]. Gondwana Research, 15: 381-395. doi: 10.1016/j.gr.2008.08.003

    CrossRef Google Scholar

    [42] Wang X C, Li Z X, Li X H, et al. , 2011. Geochemical and Hf-Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance[J]. Lithos, 127: 427-440. doi: 10.1016/j.lithos.2011.09.020

    CrossRef Google Scholar

    [43] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, (16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    Wu Y B, Zheng Y F, 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation[J]. Chinese science bulletin, (16): 1589-1604 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [44] 云南省地质矿产局, 1990. 云南省区域地质志[M]. 北京: 地质出版社, 236-255

    Google Scholar

    Geology and Mineral Resources Bureau of Yunnan Province, 1990. Regional geology of Yunnan Province [M]. Beijing: Geological Publishing House, 236-255 (in Chinese with English abstract).

    Google Scholar

    [45] Zhang C L, Yang D S, Wang H Y, et al. , 2010. Neoproterozoic Mafic Dykes and Basalts in the Southern Margin of Tarim, Northwest China: Age, Geochemistry and Geodynamic Implications[J]. Acta Geologica Sinica, 84(3), 549-562.

    Google Scholar

    [46] Zhang C L, Zou H B, Wang H Y, et al. , 2012. Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: Interaction between plate subduction and mantle plume? [J]. Precambrian Research, 222-223, 488-502.

    Google Scholar

    [47] Zhang L F, Jiang W B, Wei C J, et al. , 1999. Discovery of deerite from the Aksu Precambrian blueschist terrane and its geological significance[J]. Science in China Series D: Earth Sciences, 42(3): 233-239.

    Google Scholar

    [48] Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017

    CrossRef Google Scholar

    [49] 《中国地层典》编委会, 1996. 中国地层典-新元古界[M]. 北京: 地质出版社, 1-117

    Google Scholar

    《Chinese Stratigraphic Code》Editor Board, 1996. Neoproterozoic Strata [M]. Beijing: Geological Publishing House, 1-117 (in Chinese with English abstract).

    Google Scholar

    [50] Zhou J L, Shao S, Luo Z H, et al. , 2015. Geochronology and geochemistry of Cryogenian gabbros from the Ambatondrazaka area, east-central Madagascar: Implications for Madagascar-India correlation and Rodinia paleogeography[J]. Precambrian Research, 256: 256-270. doi: 10.1016/j.precamres.2014.11.005

    CrossRef Google Scholar

    [51] Zhou M F, Yan D P, Kennedy A K, et al. , 2002a. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51-67. doi: 10.1016/S0012-821X(01)00595-7

    CrossRef Google Scholar

    [52] Zhou M F, Kennedy A K, Sun M, et al. , 2002b. Neoproterozoic Arc‐Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia[J]. The Journal of Geology, 110: 611-618. doi: 10.1086/341762

    CrossRef Google Scholar

    [53] Zhou M F, Yan D P, Wang C L, et al. , 2006a. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic eventin South China[J]. Earth and Planetary Science Letters, 248: 286-300. doi: 10.1016/j.jpgl.2006.05.032

    CrossRef Google Scholar

    [54] Zhou M F, Ma Y X, Yan D P, et al. , 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144: 19-38. doi: 10.1016/j.precamres.2005.11.002

    CrossRef Google Scholar

    [55] 朱创业, 1989. 滇东牛头山地区早震旦世沉积相及大地构造环境[J]. 成都地质学院学报, (3): 59-66+130

    Google Scholar

    Zhu C Y, 1989. The sequences of filling and tectonic evolution of Qiaojia-Shiping basin, Yunnan During early Sinian[J]. Journal of Chengdu Collage of Geology, (3): 59-66+130 (in Chinese with English abstract).

    Google Scholar

    [56] 卓皆文, 江新胜, 王剑, 等, 2013. 华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式[J]. 中国科学: 地球科学, 43(12): 1952 − 1963

    Google Scholar

    Zhuo J W, Jiang X S, Wang J, et al. , 2013. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin, western Yangtze Continent, South China. Science China: Earth Sciences, 43(12): 1952 − 1963 (in Chinese with English abstract).

    Google Scholar

    [57] 卓皆文, 江新胜, 王剑, 等, 2015. 川西新元古界开建桥组底部沉凝灰岩锆石SHRIMPU-Pb年龄及其地质意义[J]. 矿物岩石, 35(1): 91 − 99

    Google Scholar

    Zhuo J W, Jiang X S, Wang J, et al. , 2015. Zircon SHRIMP U-Pb age at the bottom of Neoproterozoic Kaijianqiao Formation in western Sichuan, and its geological implication[J]. Mineral Petrol, 35(1): 91 − 99 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1354) PDF downloads(221) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint