2023 Vol. 43, No. 2
Article Contents

WANG Yuwen, ZHOU Xiaocheng, HE Miao, TIAN Jiao, LI Jingchao, DONG Jinyuan, YAN Yucong, LIU Fengli, YAO Bingyu, ZENG Zhaojun, CHEN Qufei. 2023. Hydrogeochemical and seismic activity characteristics of hot springs in Daocheng area, Sichuan Province. Sedimentary Geology and Tethyan Geology, 43(2): 373-387. doi: 10.19826/j.cnki.1009-3850.2023.04011
Citation: WANG Yuwen, ZHOU Xiaocheng, HE Miao, TIAN Jiao, LI Jingchao, DONG Jinyuan, YAN Yucong, LIU Fengli, YAO Bingyu, ZENG Zhaojun, CHEN Qufei. 2023. Hydrogeochemical and seismic activity characteristics of hot springs in Daocheng area, Sichuan Province. Sedimentary Geology and Tethyan Geology, 43(2): 373-387. doi: 10.19826/j.cnki.1009-3850.2023.04011

Hydrogeochemical and seismic activity characteristics of hot springs in Daocheng area, Sichuan Province

More Information
  • Daocheng area is located in the northern part of Sichuan-Yunnan block on the southeastern margin of Qinghai-Tibet Plateau. In order to reveal the geochemical characteristics of hot spring fluid and the relationship between the fluid and seismic activity in this area, hot spring water samples and gas samples from six hot springs in Daocheng area were collected, and the ion components and concentrations in hot spring water, gas components and gas isotopes of hot spring were tested. The following conclusions are obtained: the chemical types of hot spring water in the study area are mainly HCO3-Na and HCO3-Na·Ca types. The Reservoir temperature is estimated to be between 74℃ and 159℃ by cationic temperature scale, and the circulation depth is between 2.2 km and 5.0 km. The CO2 in the hot spring gas is mainly generated by the decomposition or dissolution of the carbonate rocks in the reservoir, and the proportion of helium from the mantle component is relatively low, ranging from 0.4% to 2.4%. The hot spring in the study area is formed by the heating of the deep crustal heat source caused by the atmospheric precipitation penetrating along the fault zone. In Daocheng area, the geochemical characteristics of hot spring fluid such as circulation depth and contribution rate of mantle-derived gas have a good correlation with seismic activity, and the seismic activity of the study area is weaker than that of deep fluid upwelling areas such as the surrounding Xianshuihe fault area. At the same time, in the regional scale, the future seismic activity in the Zhongdui hot spring area of Daocheng, located at the intersection of faults, is the most noteworthy.

  • 加载中
  • [1] Ballentine C J, Burnard P G, 2002. Production release and transport of noble gases in the continental crust[J]. Reviews In Mineralogy & Geochemistry, 47: 481-538.

    Google Scholar

    [2] Ballentine C J, Marty B, Sherwood L B, et al. , 2005. Neon isotopes constrain convection and volatile origin in the Earth's mantle[J]. Nature, 433(7021): 33-38. doi: 10.1038/nature03182

    CrossRef Google Scholar

    [3] Bai D H, Unsworth M J, Meju M A, et al. , 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358-362. doi: 10.1038/ngeo830

    CrossRef Google Scholar

    [4] Cao C H, Zhang M J, Tang Q Y, et al. , 2018. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin[J]. Marine And Petroleum Geology, 89: 38-46. doi: 10.1016/j.marpetgeo.2017.01.022

    CrossRef Google Scholar

    [5] 曹文正, 刘哲, 2015. 稻城茹布查卡温泉地质构造环境及形成机理分析[J]. 人民珠江, 36(1): 61-65 doi: 10.3969/j.issn.1001-9235.2015.01.015

    CrossRef Google Scholar

    Cao W Z, Liu Z, 2015. Analysis on the Geotectonic Environment and the Forming Mechanism of the Rubuchaka Hot Spring in Daocheng[J]. Pearl River, 36(1): 61-65. doi: 10.3969/j.issn.1001-9235.2015.01.015

    CrossRef Google Scholar

    [6] Chen Z, Zhou X C, Du J G, et al. , 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan Ms=7.0 earthquake in Sichuan[J]. Natural Hazards and Earth System Sciences, 15: 1149-1156. doi: 10.5194/nhess-15-1149-2015

    CrossRef Google Scholar

    [7] 迟恩先, 兰波, 肖延卿, 2014. 溶液温度及CO2含量对长石溶解度的影响[J]. 水资源与水工程学报, 25(2): 230-232

    Google Scholar

    Chi E X, Lan B, Xiao Y Q, 2014. Impact of temperature and CO2 in solution on feldspar solubility[J]. Journal of Water Resources and Water Engineering, 25(2): 230-232.

    Google Scholar

    [8] Chiodini G, Cardellini C, Di L, et al. , 2020. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines[J]. Science Advances, 6(35): eabc2938. doi: 10.1126/sciadv.abc2938

    CrossRef Google Scholar

    [9] Chiodini G, Caliro S, Cardellini C, et al. , 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes[J]. Earth and Planetary Science Letters, 304(3–4): 389 − 398.

    Google Scholar

    [10] Deutsch, W J, 1997. Groundwater Geochemistry: Fundamentals and Applications to Contamination[M]. New York: Lewis Publisher.

    Google Scholar

    [11] Diamond L W, Wanner C, Waber H N, 2018. Penetration depth of meteoric water in orogenic geothermal systems[J]. Geology, 46: 1063-1066.

    Google Scholar

    [12] Du J G, Cheng W Z, Zhang Y L, et al. , 2006. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 26(5): 533-539. doi: 10.1016/j.jseaes.2004.11.006

    CrossRef Google Scholar

    [13] 杜建国, 仵柯田, 孙凤霞. 2018. 地震成因综述[J]. 地学前缘, 25(4): 255 − 267

    Google Scholar

    Du J G, Wu K T, Sun F X, 2018. Earthquake generation: a review[J]. Earth Science Frontiers, 25(4): 255 − 267.

    Google Scholar

    [14] 段庆宝, 杨晓松, 陈建业, 等, 2015. 地震断层带流体作用的岩石物理和地球化学响应研究综述[J]. 地球物理学进展, 30(6): 2448-2462

    Google Scholar

    Duan Q B, Yang X S, Cheng J Y, et al. , 2015. Review of geochemical and petrophysical responses to fluid processes within seismogenic fault zones[J]. Progress in Geophysics, 30(6): 2448-2462.

    Google Scholar

    [15] Feng M, An M J, et al. , 2010. Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities[J]. Journal of Geophysical Research: Solid Earth, 115: B06317.

    Google Scholar

    [16] Fisher R S, Mullican F W, 1997. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas[J]. Hydrogeology Journal, 10(1997): 455-474.

    Google Scholar

    [17] Fournier R O, Truesdell A H, 1973. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. doi: 10.1016/0016-7037(73)90060-4

    CrossRef Google Scholar

    [18] 傅广海, 2009. 四川省甘孜州温泉类型、成因及旅游开发模式研究[D]: 成都理工大学.

    Google Scholar

    Fu G H, 2009. A Study on The Types, Causes and Tourism development pattern about hot Springs of Ganzi prefecture in Sichuan Province[D]: Chengdu University of Technology.

    Google Scholar

    [19] 高志友, 尹观, 范晓, 等, 2004. 四川稻城地热资源的分布特点及温泉水的同位素地球化学特征[J]. 矿物岩石地球化学通报, 2: 134-139

    Google Scholar

    Gao Z Y, Yin G, Fan X, et al. , 2004. Distribution characteristics of geothermal resources and Isotopic geochemistry of Hot-Water in the Daocheng County, Sichuan Province[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2: 134-139.

    Google Scholar

    [20] Gaillardet J, Viers J, Dupré B, et al. , 2014. Trace elements in river waters[M]//Heinrich D, Holland, Karl K. et al. , Treatise on Geochemistry (Second Edition). Elsevier, 195 − 235.

    Google Scholar

    [21] Giggenbach W F, 1988. Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [22] Hilton D R, 1996. The helium and carbon isotope systematics of a continental geothermal system: Results from monitoring studies at Long Valley Caldera[J]. Chemical Geology, 127(4): 269-295. doi: 10.1016/0009-2541(95)00134-4

    CrossRef Google Scholar

    [23] Hou Y, Shi Z, Mu W, 2018. Fluid geochemistry of fault zone hydrothermal system in the Yidun−Litang area, eastern Tibetan Plateau geothermal belt[J]. Geofluids. 2018: 1 − 13.

    Google Scholar

    [24] Huang X, Sillanpää M, Duo B, et al. , 2008. Water quality in the Tibetan Plateau: Metal contents of four selected rivers[J]. Environmental Pollution, 156(2): 270-277. doi: 10.1016/j.envpol.2008.02.014

    CrossRef Google Scholar

    [25] Huang X, Sillanpää M, Gjessing E T, et al. , 2009. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers[J]. Science of The Total Environment, 407(24): 6242-6254. doi: 10.1016/j.scitotenv.2009.09.001

    CrossRef Google Scholar

    [26] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 59(8): 2892-2910

    Google Scholar

    Jiang G Z, Gao P, Rao Song, et al. , 2016. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics, 59(8): 2892-2910.

    Google Scholar

    [27] Kharaka M, 1982. Chemical Geothermometers Applied to formation waters, Gulf of Mexico and California Basins: Abstract[J]. Aapg Bulletin, 66.

    Google Scholar

    [28] Kharaka Y K, Mariner R H, 1989. Chemical geothermometers and their application to formation waters from sedimentary basins. 99~117. //Thermal History of Sedimentary Basins[M]. New York: Springer−Verlag.

    Google Scholar

    [29] 李其林, 王云, 周艺颖, 等, 2019. 川滇菱块西北缘温泉地球化学特征与地震活动性关系研究[J]. 国际地震动态, 8: 121-122

    Google Scholar

    Li Q L, Wang Y, Zhou Y Y, et al. , 2019. Study on the relationship between geochemical characteristics and seismicity of hot springs in the northwest margin of Sichuan-Yunnan Ling Block[J]. Progress in Earthquake Sciences, 8: 121-122.

    Google Scholar

    [30] 李中平, 陶明信, 李立武, 等, 2007. 气相色谱-稳定同位素质谱法测定溶解无机碳碳同位素[J]. 分析化学, 35(10): 1455-1458 doi: 10.1016/S1872-2040(07)60089-9

    CrossRef Google Scholar

    Li Z P, Tao M X, Li L W, et al. , 2007. Determination of isotope Composition of Dissolved inorganic Carbon by Gas-Chromatography-Conventional isotope-ratio Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 35(10): 1455-1458. doi: 10.1016/S1872-2040(07)60089-9

    CrossRef Google Scholar

    [31] Liu W, Guan L F, Liu Y, et al. , 2022. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 607: 127554. doi: 10.1016/j.jhydrol.2022.127554

    CrossRef Google Scholar

    [32] 刘金华, 张世奇, 张鹏飞, 等, 2005. 川西地区上三叠统层序地层岩石地球化学特征[J]. 四川地质学报, 25(4): 198-201

    Google Scholar

    Liu J H, Zhang S Q, Zhang P F, et al. , 2005. On the lithogeochemical features of the upper Triassic sequence strata in West Sichuan[J]. Acta Geologica Sichuan, 25(4): 198-201.

    Google Scholar

    [33] 刘明亮, 2018. 西藏典型高温水热系统中硼的地球化学研究[D]: 中国地质大学.

    Google Scholar

    Liu M L, 2018. Boron geochemistry of the geothermal waters from typical hydrothermal systems in Tibet[D]: China University of Geosciences(Beijing).

    Google Scholar

    [34] Luca U, Antonio P, Jonny R, et al. , 2016. Dynamic simulation of CO2-injection-induced fault rupture with slip-rate dependent friction coefficient[J]. Geomechanics for Energy and the Environment, 7: 47-65. doi: 10.1016/j.gete.2016.04.003

    CrossRef Google Scholar

    [35] Lyon G L, Hulston J R, 1984. Carbon and hydrogen isotopic compositions of geothermal gases[J]. Geochimica et Cosmochimica Acta, 48: 169 − 173.

    Google Scholar

    [36] Marty B, Jambon A, 1987. C/3He in volatile fluxes from the solid Earth: Implication for carbon geodynamics[J]. Earth and Planetary Science Letters, 83(1-4): 16-26. doi: 10.1016/0012-821X(87)90047-1

    CrossRef Google Scholar

    [37] Miller S A, Ben-Zion Y, Burg J P, 1999, A three-dimensional fluid-controlled earthquake model: behavior and implications[J]. Journal of Geophysics Research, 104(B5): 10621-10638. doi: 10.1029/1998JB900084

    CrossRef Google Scholar

    [38] O'Nions R K, Oxburgh E R, 1988. Helium volatile fluxes and the development of continental crust[J]. Earth and Planetary Science Letters, 90(3): 331-347. doi: 10.1016/0012-821X(88)90134-3

    CrossRef Google Scholar

    [39] 庞健峰, 丁孝忠, 韩坤英, 等, 2017.1: 100万中华人民共和国数字地质图空间数据库[J]. 中国地质, 44(S1): 8-18

    Google Scholar

    Pang J F, Ding X Z, Han K Y, et al. , 2017. The National 1: 1000000 Geological Map Spatial Database[J]. Geology in China, 44(S1): 8-18.

    Google Scholar

    [40] 庞忠和, 杨峰田, 罗璐, 等, 2013. 地热田储层温度的研究方法[M]//丁仲礼, 固体地球科学研究方法. 科学出版社, 219 − 242

    Google Scholar

    Pang Z H, Yang F T, Luo L, et al. , 2013. Methods for studying reservoir temperature in geothermal fields[M]//Din Z L, Solid Earth Science Research Methods. Science Press, 219 − 242.

    Google Scholar

    [41] Pérez N M, Hernández P A, Igarashi G, et al. , 2008. Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain[J]. Geochemical Journal, 42(1): 75-83. doi: 10.2343/geochemj.42.75

    CrossRef Google Scholar

    [42] Pili É, Poitrasson F, Gratier J P, 2002. Carbon-oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault system; partitioning of fluid sources and pathways[J]. Chemical Geology, 190(1-4): 231-250. doi: 10.1016/S0009-2541(02)00118-3

    CrossRef Google Scholar

    [43] Ray M C, Hilton D R, Mu J, et al. , 2009. The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the Southern Volcanic Zone of Chile[J]. Chemical Geology, 266(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.12.026

    CrossRef Google Scholar

    [44] Rouabhia A, Djabri L, Hadji R, et al. , 2012. Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake NE Algeria[J]. Arabian Journal of Geosciences. 5: 1 − 13.

    Google Scholar

    [45] Sano Y, Marty B, 1995. Origin of carbon in fumarolic gas from island arcs[J]. Chemical Geology, 119(1-4): 265-274. doi: 10.1016/0009-2541(94)00097-R

    CrossRef Google Scholar

    [46] Sano Y, Takahata N, Igarashi G, et al. , 1998. Helium degassing related to the Kobe earthquake[J]. Chemical Geology, 150(1-2): 171-179. doi: 10.1016/S0009-2541(98)00055-2

    CrossRef Google Scholar

    [47] 邵维晔, 王云, 李其林, 等. 2022. 红河断裂带温泉水文地球化学及构造活动特征研究[J]. 矿物岩石地球化学通报, 41(3): 612 − 624.

    Google Scholar

    Shao W Y, Wang Y, Li Q L, et al., 2022. A study on hydrogeochemistry and tectonic activity features of hot springs in the Red River fault zone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(3): 612 − 624.

    Google Scholar

    [48] Skelton A, Andrén M, Kristmannsdóttir H, et al. , 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 7(2014): 10.1038.

    Google Scholar

    [49] Smeraglia L, Berra F, Billi A, et al. , 2016. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks[J]. Earth And Planetary Science Letters, 450: 292-305. doi: 10.1016/j.jpgl.2016.06.042

    CrossRef Google Scholar

    [50] Soto-Jimenez M F, Páez-Osuna F, 2001. Distribution and normalization of heavy metal concentrations in Mangrove and Lagoonal Sedi-ments from Mazatl6n Harbor (SE Gulf of California)[J]. Estuarine, Coastal and Shelf Science, 53(3): 259-274. doi: 10.1006/ecss.2000.0814

    CrossRef Google Scholar

    [51] Tamburello G, Pondrelli S, Chiodini G, et al. , 2018. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature Communications, 9: 4608. doi: 10.1038/s41467-018-07087-z

    CrossRef Google Scholar

    [52] 孙红丽, 马峰, 蔺文静, 等, 2015. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 34(3): 171-177

    Google Scholar

    Sun H L, Ma F, Liu W J, et al. , 2015. Geochemical Characteristics and Geothermometer Application in High Temperature Geothermal Field in Tibet[J]. Bulletin of Geological Science and Technology, 34(3): 171-177.

    Google Scholar

    [53] 唐晗晗, 郭良辉, 方圆, 2020. 青藏高原东南缘热流估算及与地震活动相关性分析[J]. 地球物理学报, 63(3): 1056-1069 doi: 10.6038/cjg2019N0045

    CrossRef Google Scholar

    Tang H H, Guo L H, Fang Y, 2020. Estimation of heat flow in southeastern margin of Tibetan Plateau and its analysis of the correlation with earthquake activity[J]. Chinese Journal of Geophysics, 63(3): 1056-1069. doi: 10.6038/cjg2019N0045

    CrossRef Google Scholar

    [54] Tian J, Pang Z H, Liao D W, et al. , 2021. Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau[J]. Applied Geochemistry, 131: 105036. doi: 10.1016/j.apgeochem.2021.105036

    CrossRef Google Scholar

    [55] Tian J, Pang Z H, Guo Q, et al. , 2018. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 74: 92-105. doi: 10.1016/j.geothermics.2018.02.006

    CrossRef Google Scholar

    [56] Walraevens K, Bakundukize C, Mtoni Y E, et al. , 2018. Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi[J]. Journal of Geochemical Exploration, 188(3): 24-42.

    Google Scholar

    [57] Wang Q L, Cui D X, Wang W P, et al. , 2008. Research on current vertical crustal movement in Western Sichuan (in Chinese)[J]. Science in China Series D: Earth Sciences, 38: 598–610.

    Google Scholar

    [58] 王茜, 2002. 四川稻城温泉同位素、元素水文地球化学特征研究[D]: 成都理工大学.

    Google Scholar

    Wang Q, 2002. Study on the Thermal Spring Character of Isotope and Element Hydrogeochemistry in Daocheng, Sichuan[D]: Chengdu University of Technology.

    Google Scholar

    [59] Wang W, Qiao X, Ding K, 2021. Present−day kinematics in southeastern Tibet inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB021305.

    Google Scholar

    [60] Wang Y C, Zhou X C, Tian J et al. , 2023. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau: Constraints on regional seismic activities[J]. Journal of Hydrology, 617(C): 129042.

    Google Scholar

    [61] 汪洋, 2000. 利用地下流体氦同位素比值估算大陆壳幔热流比例[J]. 地球物理学报, 6: 762 − 770.

    Google Scholar

    Wang Y, 2000. Estimations of the ratio of crust/mantle heat flow using helium isotope ratio of underground fluid[J]. Chinese Journal of Geophysics, 6: 762 − 770.

    Google Scholar

    [62] 王莹, 周训, 于湲, 等, 2007. 应用地热温标估算地下热储温度[J]. 现代地质, 4: 605-612 doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    Wang Y, Zhou X, Yu Y, et al. , 2007. Application of geothermometers to calculation of temperature of geothermal reservoirs[J]. Geoscience, 4: 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    [63] Wintsch R P, Christoffersen R, Kronenberg A K, 1995. Fluid-rock reaction weakening of fault zones[J]. Journal of Geophysical Research: Solid Earth, 100: 13021-13032. doi: 10.1029/94JB02622

    CrossRef Google Scholar

    [64] Woltemate I, Whiticar M J, Schoell M, 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake[J]. Limnology and Oceanography, 29(5): 985-992. doi: 10.4319/lo.1984.29.5.0985

    CrossRef Google Scholar

    [65] 许鹏, 谭红兵, 张燕飞, 等. 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142 − 1154

    Google Scholar

    Xu P, Tan H B, Zhang Y F, et al. , 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142 − 1154.

    Google Scholar

    [66] 徐胜, 管芦峰, 张茂亮, 等, 2022. 青藏高原东缘鲜水河-安宁河断裂带深源气体释放[J]. 中国科学: 地球科学, 52(2): 291 − 308.

    Google Scholar

    Xu S, Guan L F, Zhang M L, et al. , 2022. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 65(1): 139 − 155.

    Google Scholar

    [67] Xu X W, Wen X Z, Zheng R Z, et al. , 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region. China: Science in China Series D[J]. Earth Sciences, 46(2): 210-226.

    Google Scholar

    [68] Yan Y C, Zhou X C, Liao L X, et al. , 2022. Hydrogeochemical Characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone, Southwestern China[J]. Water, 14: 550. doi: 10.3390/w14040550

    CrossRef Google Scholar

    [69] Zhang C, Zhang Y, Wu M, 2003. Study on relationship between earthquake and Hydro-Geochemistry of groundwater in southern part of North-South earthquake belt in China[J]. Journal of Geomechanics, 9: 21-30.

    Google Scholar

    [70] Zhang J, Li W Y, Tang X C, et al. , 2017. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Science China Earth Sciences, 60: 1507-1521. doi: 10.1007/s11430-016-9053-2

    CrossRef Google Scholar

    [71] Zhang Y, Replumaz A, Wang G, et al. , 2015. Timing and rate of exhumation along the Litang fault system, implication for fault reorganisation in South East Tibet[J]. Tectonics, 34(6): 1219-1243. doi: 10.1002/2014TC003671

    CrossRef Google Scholar

    [72] 张彦辉, 张良圣, 常阳, 等, 2018. 增压-微波消解电感耦合等离子体质谱法测定含难溶矿物岩石样品中的微量元素[J]. 铀矿地质, 34(2): 105-111

    Google Scholar

    Zhang Y H, Zhang L S, Chang Y, et al. , 2018. Determining trace elements in rock samples containing Refractory minerals by pressurize-microwave inductively coupled plasma mass spectrometry[J]. Uranium Geology, 34(2): 105-111.

    Google Scholar

    [73] Zhou R, Zhou X C, Li Y, et al. , 2022. Hydrogeochemical and isotopic characteristics of the hot springs in the Litang fault zone, Southeast Qinghai−Tibet Plateau[J]. Water. 14, 1496.

    Google Scholar

    [74] Zhou X C, Liu L, Chen Z, et al. , 2017. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 79: 17-26. doi: 10.1016/j.apgeochem.2017.01.022

    CrossRef Google Scholar

    [75] Zhou X C, Cheng J W, Yang L M, et al. , 2015. Hot Spring gas geochemistry in Western Sichuan Province, China After the Wenchuan Ms8.0 earthquake[J]. Terrestrial Atmospheric and Oceanic Sciences, 26(4): 361-373. doi: 10.3319/TAO.2015.01.05.01(TT)

    CrossRef Google Scholar

    [76] Zhou X C, Wang W L, Li L W, et al. , 2020. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, Southeast Tibetan Plateau[J]. Acta Petrologica Sinica, 36(7): 2197-2214. doi: 10.18654/1000-0569/2020.07.18

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(1349) PDF downloads(194) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint