2023 Vol. 43, No. 2
Article Contents

ZHANG Xu, ZHANG Wen, LÜ Guosen, YU Zhongyou, DAI Qian. 2023. Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007
Citation: ZHANG Xu, ZHANG Wen, LÜ Guosen, YU Zhongyou, DAI Qian. 2023. Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007

Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration

More Information
  • Geothermal resource is a clean, low-carbon, abundant, safe and high-quality renewable energy. Vigorously developing and utilizing geothermal resources is of great significance to the implementation of the strategic goal of "carbon peak, carbon neutral". Located in Rangtang County, Aba Prefecture, western Sichuan on the southeast edge of the Qinghai-Tibet Plateau, Ranggu geothermal spring is a high-quality geothermal resource drilled in the geothermal resource blank area of the Songpan-Ganzi fold zone. The wellhead water temperature is 39.5℃, and the artesian flow is 1500 m3/d. It is a high-quality thermal mineral water rich in metasilicic acid, metaborate, strontium, fluorine and lithium, and has high medical value. Based on the study of hydrogeochemical and geophysical characteristics, the paper discusses the formation mechanism of geothermal energy. The results show that the pH value of the spring is 6.7~7.1, the total dissolved solids are 2050~2760 mg/L, the hydrochemical type is HCO3-Na, and the water-rock interaction is intense. Its hydrogen and oxygen isotopes are distributed near the global atmospheric precipitation equation line, indicating that geothermal water is mainly recharged by atmospheric precipitation. The Na-K-Mg balance diagram shows immature water, indicating that the geothermal water is intensely mixed by fissure phreatic water or surface cold water. Based on the traditional geothermal temperature scale, silicon enthalpy mixing model and Cl correction, it is estimated that the reservoir temperature is 138~183.3℃, and the mixing ratio of cold water is 77.9~84.3%. Based on the characteristics of geophysical exploration and drilling exposure, a conceptual model of the genesis of the Ranggu geothermal spring is constructed in this paper, which can provide theoretical support for the development and utilization of the Ranggu geothermal spring.

  • 加载中
  • [1] Blasch K W, Bryson J R, 2007. Distinguishing sources of ground water recharge by using δ2H and δ18O[J]. Ground Water, 45(3): 294-308. doi: 10.1111/j.1745-6584.2006.00289.x

    CrossRef Google Scholar

    [2] Chandrajith R, Barth J A C, Subasinghe N D, et al. , 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology, 476: 360-369. doi: 10.1016/j.jhydrol.2012.11.004

    CrossRef Google Scholar

    [3] 陈墨香, 汪集旸, 1994. 中国地热研究的回顾和展望[J]. 地球物理学报, 37(S1): 320-338

    Google Scholar

    Chen M X, Wang J Y, 1994. Review and prospect on geothermal studies in China[J]. Acta Geophysica Sinica, 37(S1): 320-338.

    Google Scholar

    [4] Cheng Y Z, Pang Z H, Kong Y L, et al. , 2022. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey[J]. Geothermics, 102: 102386. doi: 10.1016/j.geothermics.2022.102386

    CrossRef Google Scholar

    [5] Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(346): 1702-1703.

    Google Scholar

    [6] Craig J, Absar A, Bhat G, et al. , 2013. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N. W. Himalaya, India[J]. Earth-Science Reviews, 126: 156-177. doi: 10.1016/j.earscirev.2013.05.004

    CrossRef Google Scholar

    [7] Fournier R O, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [8] Fournier R O, 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems[J]. Journal of Volcanology and Geothermal Research, 5(1-2): 1-16. doi: 10.1016/0377-0273(79)90029-5

    CrossRef Google Scholar

    [9] 傅广海, 殷继成, 2009. 四川省甘孜州温泉资源分布、成因及旅游开发探讨[J]. 西北大学学报: 自然科学版, 39(1): 142-148

    Google Scholar

    Fu G H, Yin J C, 2009. A study on the distribution and general mechanism about the hot spring as well as tourism development in Ganzi of Sichuan Province[J]. Journal of Northwest University (Natural Science Edition), 39(1): 142-148.

    Google Scholar

    [10] Gaillardet J, Dupré B, Louvat P, et al. , 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 159(1): 3-30.

    Google Scholar

    [11] Gibbs R J, 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [12] Giggenbach W F, 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [13] Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    CrossRef Google Scholar

    [14] 韩建光, 蒋宗霖, 田颖, 等, 2008. 中国地热资源及开发利用[J]. 消费导刊, 23: 39-40

    Google Scholar

    Han J G, Jiang Z L, Tian Y, et al. , 2008. China's geothermal resources and their development and utilization [J]. Consumer Guide, 23: 39-40.

    Google Scholar

    [15] Hähnlein S, Bayer P, Ferguson G, et al. 2013. Sustainability and policy for the thermal use of shallow geothermal energy[J]. Energy Policy, 59: 914 − 925.

    Google Scholar

    [16] 胡泽祥, 赵学钦, 李松, 等, 2022. 色达—松潘断块温泉水文地球化学特征及成因分析[J]. 现代地质, 36(2): 484-493 doi: 10.19657/j.geoscience.1000-8527.2021.072

    CrossRef Google Scholar

    Hu Z X, Zhao X Q, Li S, et al. , 2022. Geothermal hydrogeochemical characteristics and genetic analysis of the Seda-Songpan Fault Block[J]. Geoscience, 36(2): 484-493. doi: 10.19657/j.geoscience.1000-8527.2021.072

    CrossRef Google Scholar

    [17] Kana J D, Djongyang N, Danwe R, et al. , 2015. A review of geophysical methods for geothermal exploration[J]. Renewable and Sustainable Energy Reviews, 44: 87-95. doi: 10.1016/j.rser.2014.12.026

    CrossRef Google Scholar

    [18] Li J X, Yang G, Gideon S, et al. , 2018. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 75: 154-163. doi: 10.1016/j.geothermics.2018.04.008

    CrossRef Google Scholar

    [19] 李世平, 黄锦捷, 陶毅, 2018. 音频大地电磁法与高密度电法技术在实际中的对比应用[J]. 低碳世界, 5: 332-333 doi: 10.3969/j.issn.2095-2066.2018.01.216

    CrossRef Google Scholar

    Li S P, Huang J J, Tao Y, 2018. Comparative application of audio frequency magnetotelluric method and high-density electrical method in practice [J]. Low Carbon World, 5: 332-333 doi: 10.3969/j.issn.2095-2066.2018.01.216

    CrossRef Google Scholar

    [20] Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    CrossRef Google Scholar

    [21] Li Y M, Pang Z H, Yang F T, et al. , 2017. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China[J]. Journal of Asian Earth Sciences, 149: 134-144. doi: 10.1016/j.jseaes.2017.06.007

    CrossRef Google Scholar

    [22] 廖志杰, 1999. 腾冲火山和地热[J]. 地质论评, S1: 934-939 doi: 10.3321/j.issn:0371-5736.1999.z1.135

    CrossRef Google Scholar

    Liao Z J, 1999. Volcanism and geothermal s in Tenchong County, Yunnan Province, China[J]. Geological Review, S1: 934-939. doi: 10.3321/j.issn:0371-5736.1999.z1.135

    CrossRef Google Scholar

    [23] 刘蓓莉, 1990. 区域岩石物性在地质工作中的应用[J]. 物探与化探, 14(1): 32-36

    Google Scholar

    Liu B L, 1990. The application of physical properties of regional rocks to geological work[J]. Geophysical and Geochemical Exploration, 14(1): 32-36.

    Google Scholar

    [24] 刘蓓莉, 1994. 四川省岩石密度数据的分析及应用[J]. 物探与化探, 18(3): 232-237

    Google Scholar

    Liu B L, 1994. Analysis and application of density data of rocks from Sichuan Province[J]. Geophysical and Geochemical Exploration, 18(3): 232-237.

    Google Scholar

    [25] Lu L H, Pang Z H, Kong Y L, et al. , 2018. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6

    CrossRef Google Scholar

    [26] Marques J M, Carreira P M M, Aires-Barros L, et al. , 2000. Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpretation[J]. Environmental Earth Sciences, 40(1-2): 53-63.

    Google Scholar

    [27] 莫宣学, 2009. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 28(12): 1693-1703 doi: 10.3969/j.issn.1671-2552.2009.12.002

    CrossRef Google Scholar

    Mo X X, 2009. A review of genesis study on magmatic rocks of the Qinghai-Tibet Plateau: achievements and remaining problems[J]. Geological Bulletin of China, 28(12): 1693-1703. doi: 10.3969/j.issn.1671-2552.2009.12.002

    CrossRef Google Scholar

    [28] 莫宣学, 2010. 青藏高原地质研究的回顾与展望[J]. 中国地质, 37(4): 841-853 doi: 10.3969/j.issn.1000-3657.2010.04.002

    CrossRef Google Scholar

    Mo X X, 2010. A review and prospect of geological researches on the Qinghai-Tibet Plateau[J]. Geology in China, 37(4): 841-853. doi: 10.3969/j.issn.1000-3657.2010.04.002

    CrossRef Google Scholar

    [29] Mongillo M A, Axelsson G, 2010. Preface to Geothermics Special Issue on sustainable geothermal utilization[J]. Geothermics, 39(4): 279-282. doi: 10.1016/j.geothermics.2010.09.011

    CrossRef Google Scholar

    [30] Munoz G, 2014. Exploring for geothermal resources with electromagnetic methods[J]. Surveys in Geophysics, 35(1): 101-122. doi: 10.1007/s10712-013-9236-0

    CrossRef Google Scholar

    [31] Peacock J R, Mangan M T, McPhee D, et al. , 2016. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics[J]. Geophysical Research Letters, 43(15): 7953-7962. doi: 10.1002/2016GL069263

    CrossRef Google Scholar

    [32] Pang Z H, Reed M, 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods[J]. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. doi: 10.1016/S0016-7037(98)00037-4

    CrossRef Google Scholar

    [33] 庞忠和, 樊志成, 汪集旸, 1990. 漳州盆地水热系统的氢氧稳定同位素研究[J]. 岩石学报, 4: 75-84 doi: 10.3321/j.issn:1000-0569.1990.01.008

    CrossRef Google Scholar

    Pang Z H, Fan Z C, Wang J Y, 1990. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system[J]. Acta Petrologica Sinica, 4: 75-84. doi: 10.3321/j.issn:1000-0569.1990.01.008

    CrossRef Google Scholar

    [34] Poage P A, Sjostrom D J, Goldberg J, et al. , 2000. Isotopic evidence for Holocene climate change in the northern Rockies from a goethite-rich ferricrete chronosequence[J]. Chemical Geology, 166(3-4): 327-340. doi: 10.1016/S0009-2541(99)00220-X

    CrossRef Google Scholar

    [35] Ren X F, Li P Y, He X D, et al. , 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China[J]. Archives of Environmental Contamination and Toxicology, 80(1): 74–91 doi: 10.1007/s00244-020-00772-5

    CrossRef Google Scholar

    [36] 宋春林, 孙向阳, 王根绪, 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 24(11): 1860-1869 doi: 10.11870/cjlyzyyhj201511008

    CrossRef Google Scholar

    Song C L, Sun X Y, Wang G X, 2015. A study on precipitation stable isotopes characteristics and vapor sources of the Subalpine Gongga Mountain, China[J]. Resources and Environment in the Yangtze Basin, 24(11): 1860-1869. doi: 10.11870/cjlyzyyhj201511008

    CrossRef Google Scholar

    [37] Tian J, Pang Z H, Guo Q, et al. , 2018. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the eastern Himalayan Syntax[J]. Geothermics, 74: 92-105. doi: 10.1016/j.geothermics.2018.02.006

    CrossRef Google Scholar

    [38] 天娇, 庞忠和, 张睿, 2020. FixAl及同位素方法在EGS返排液研究中的应用[J]. 地学前缘, 27(1): 112-122 doi: 10.13745/j.esf.2020.1.13

    CrossRef Google Scholar

    Tian J, Pang Z H, Zhang R, 2020. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems(EGS)[J]. Earth Science Frontiers, 27(1): 112-122. doi: 10.13745/j.esf.2020.1.13

    CrossRef Google Scholar

    [39] Ta M M, Zhou X, Guo J, et al. , 2019. Hydrogeochemical characteristics and formation of the hot springs occurring in the plunging ends of an anticline in Chongqing, eastern Sichuan Basin, China[J]. Environmental Earth Sciences, 78(15): 468-468 doi: 10.1007/s12665-019-8486-7

    CrossRef Google Scholar

    [40] Wang C G, Zheng M P, 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010

    CrossRef Google Scholar

    [41] 王国建, 宁丽荣, 李广之, 等, 2021. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析[J]. 地质论评, 67(1): 117-128 doi: 10.16509/j.georeview.2021.01.009

    CrossRef Google Scholar

    Wang G J, Ning L R, Li G Z, et al. , 2021. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system[J]. Geological Review, 67(1): 117-128. doi: 10.16509/j.georeview.2021.01.009

    CrossRef Google Scholar

    [42] Wright P M, Ward, S H, Ross, H P, et al. , 1985. State-of-the-art geophysical exploration for geothermal resources[J]. Geophysics, 50(12): 2666-2696. doi: 10.1190/1.1441889

    CrossRef Google Scholar

    [43] 肖洒, 2020. 基于天然镭氡同位素的基岩裂隙水文地质参数估算研究[D]. 哈尔滨: 哈尔滨工业大学.

    Google Scholar

    Xiao S, 2020. Estimation of hydrogeological parameters of a fractured aquifer system with natural radium and radon isotopes[D]. Harbin: Harbin Institute of Technology.

    Google Scholar

    [44] Xu T F, Feng G H, Shi Y, 2014. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 144(PA): 179-193.

    Google Scholar

    [45] Yu J S, Zhang H B, Yu F J, et al. , 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285

    CrossRef Google Scholar

    [46] 张林, 雷宛, 胡旭, 等, 2018. 高密度电法与音频大地电磁法在四川某地热勘探中的应用[J]. 勘察科学技术, 6: 55-58 doi: 10.3969/j.issn.1001-3946.2018.03.012

    CrossRef Google Scholar

    Zhang L, Lei W, Hu X, et al. , 2018. Application of high-density electrical method and Audio Magnetotelluric method in a geothermal exploration in Sichuan Province[J]. Site Investigation Science and Technology, 6: 55-58. doi: 10.3969/j.issn.1001-3946.2018.03.012

    CrossRef Google Scholar

    [47] Zhang Y H, Dai Y S, Wang Y, et al. , 2021. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of The Total Environment, 784: 147186. doi: 10.1016/j.scitotenv.2021.147186

    CrossRef Google Scholar

    [48] 张云辉, 2018. 鲜水河断裂康定−磨西段地热系统成因及开发利用研究[D]. 成都: 成都理工大学.

    Google Scholar

    Zhang Y H, 2018. Research on genesis and development of the geothermal system in the Kangding−Moxi segment of the Xianshuihe fault[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [49] 张云辉, 李晓, 许模, 等, 2021. 鲜水河地热带道孚地区地热水水文地球化学特征研究[J]. 安全与环境工程, 28(3): 42-51 doi: 10.13578/j.cnki.issn.1671-1556.20201201

    CrossRef Google Scholar

    Zhang Y H, Li X, Xu M, et al. , 2021. Hydrogeochemical characteristics of geothermal waters in the Daofu area of the Xianshuihe geothermal belt[J]. Safety and Environmental Engineering, 28(3): 42-51. doi: 10.13578/j.cnki.issn.1671-1556.20201201

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(3121) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint