Citation: | Cao Rong, Zhang Shujing, Lan Zhongwu. 2023. Application of zircon U-Pb dating of volcanic ash to dating of sedimentary rock. Sedimentary Geology and Tethyan Geology, 43(2): 464-474. doi: 10.19826/j.cnki.1009-3850.2023.04001 |
This paper has summarized the significance of dating of sedimentary rock, and introduced the application of volcanic ash zircon U-Pb dating method to dating of sedimentary rocks. Specifically, it has summarized previous studies on the distribution of volcanic event layers, identification of volcanic interlayers, differentiation of volcanic tuff zircons and application examples so as to provide experience for geoscientists in the application of volcanic zircon U-Pb dating. Compared to traditional K-Ar/Ar-Ar and Rb-Sr dating techniques for diagenetic minerals, volcanic ash zircon U-Pb dating has a significant advantage in dating of sedimentary rocks. Volcanic ash interlayer is widespread and isochronous, and zircon U-Pb isotopic system is robust and not easily disturbed. Therefore, volcanic ash zircon U-Pb dating is the first choice for high precision dating of sedimentary rocks. Dating of sedimentary rocks involves field observation, sample collection, indoor petrographic observation, geochronological analysis and age interpretation. Of these, identification of volcanic ash interlayer is the most important despite difficulty. It is necessary to clarify different types of volcanic interlayer and understand the distribution of sedimentary layers of volcanic events. Based on this, field observations and indoor study can be used to further distinguish volcanic interlayers and identify them accurately. In addition, dating of volcanic tuff zircons requires the distinction between volcanic ash zircons, detrital zircons, inherited zircons and xenocrystal zircons, which can be distinguished by mineral morphology and mineral chemistry.
[1] | Arbuzov S I, Mezhibor A M, Spears D A, et al. , 2016. Nature of tonsteins in the Azeisk deposit of the Irkutsk Coal Basin (Siberia, Russia)[J]. International Journal of Coal Geology, 153: 99-111. doi: 10.1016/j.coal.2015.12.001 |
[2] | Aziz H A, Di Stefano A, Foresi L M, et al. , 2008. Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 257(1-2): 123-138. |
[3] | Barfod G H, Otero O, Albarède F, 2003. Phosphate Lu–Hf geochronology[J]. Chemical Geology, 200(3-4): 241-253. doi: 10.1016/S0009-2541(03)00202-X |
[4] | 常丽华, 曹林, 高福红, 2009. 火成岩鉴定手册[M]. 北京: 地质出版社. Chang L H, Cao L, GaO F H, 2009. Igneous rock Identification Manual[M]. Beijing: Geological Publishing House. |
[5] | Chen D F, Dong W Q, Zhu B Q, et al. , 2004. Pb–Pb ages of Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glaciation events[J]. Precambrian Research, 132(1-2): 123-132. doi: 10.1016/j.precamres.2004.02.005 |
[6] | 陈宣谕, 徐义刚, Martin M, 2014. 火山灰年代学: 原理与应用[J]. 岩石学报, 30(12): 3491-3500 Chen X Y, Xu Y G, Martin M, 2014. Tephrochronology: Principles and applications[J]. Acta Petrologica Sinica, 30(12): 3491-3500. |
[7] | Courtillot V E, Renne P R, 2003. On the ages of flood basalt events[J]. Comptes Rendus Geoscience, 335(1): 113-140. doi: 10.1016/S1631-0713(03)00006-3 |
[8] | 邓奇, 崔晓庄, 汪正江, 等, 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质, 43(1): 212-225 doi: 10.19826/j.cnki.1009-3850.2022.10005 Deng Q, Cui X Z, Wang Z J, et al. , 2023. Huashan GroupBlock: Constraints from the geochronology and geochemistry of theNew understanding of the tectonic evolution of the northern margin of Yangtze[J]. Sedimentary Geology and Tethyan Geology, 43(1): 212-225. doi: 10.19826/j.cnki.1009-3850.2022.10005 |
[9] | Ernst R E, 2014. Large Igneous Provinces[M]. London: Cambridge University Press. |
[10] | 冯宝华, 董茹丽, 1992. 火山事件沉积粘土岩的研究及其意义[J]. 中国区域地质, 2: 149-155 Feng B H, Dong R L, 1992. The study of volcanic event sedimentary claystone and its significance[J]. Regional Geology of China, 2: 149-155. |
[11] | 冯宝华, 2005. 火山事件泥岩夹矸的沉积学及其自然伽马测井地层学[J]. 测井技术信息, 18(3): 22-24 Feng B H, 2005. Sedimentology and gamma logging stratigraphy of volcanic event mudstone gangue[J]. Well Logging Technology Information, 18(3): 22-24. |
[12] | Godet A, Föllmi K B, Stille P, et al. , 2011. Reconciling strontium-isotope and K-Ar ages with biostratigraphy: the case of the Urgonian platform, Early Cretaceous of the Jura Mountains, Western Switzerland[J]. Swiss Journal of Geosciences, 104(1): 147-160. doi: 10.1007/s00015-011-0053-5 |
[13] | 郭锋, 范蔚茗, 李超文, 等, 2007. 延吉地区古新世埃达克岩捕获锆石U-Pb年龄、Hf同位素和微量元素地球化学对区域中酸性岩浆演化的指示[J]. 岩石学报, 23(2): 413-422 Guo F, Fan W M, Li C W, et al. , 2007. Zircon U-Pb age, U-Pb ages, Hf isotope and trace element compositions of captured zircons of the Paleocene adakites in the Yanji area, NE China: Implications for magmatic evolution of intermediate-felsic magmas[J]. Acta Petrologica Sinica, 23(2): 413-422. |
[14] | Hess J C, Lippolt H J, 1986. 40Ar/39Ar ages of tonstein and tuff sanidines: New calibration points for the improvement of the Upper Carboniferous time scale[J]. Chemical Geology: Isotope Geoscience section, 59(2-3): 143-154. doi: 10.1016/0168-9622(86)90066-7 |
[15] | Jahn B-M, Cuvellier H, 1994. Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment[J]. Chemical Geology, 115(1-2): 125-151. doi: 10.1016/0009-2541(94)90149-X |
[16] | Lan Z W, Li X-H, Zhu M, et al. , 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 263: 123-141. doi: 10.1016/j.precamres.2015.03.012 |
[17] | Lan Z W, Chen Z Q, Li X H, et al. , 2013. Hydrothermal origin of the Paleoproterozoic xenotime from the King Leopold Sandstone of the Kimberley Group, Kimberley, NW Australia: Implications for a ca 1.7 Ga far-field hydrothermal event[J]. Australian Journal of Earth Sciences, 60(4): 497-508. doi: 10.1080/08120099.2013.806360 |
[18] | Lan Z W, Huyskens M H, Lu K, et al. , 2020. Toward refining the onset age of Sturtian glaciation in South China[J]. Precambrian Research, 338: 105555. doi: 10.1016/j.precamres.2019.105555 |
[19] | Lan Z W, Li X H, Chen Z Q, et al. , 2014a. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes[J]. Precambrian Research, 251: 21-32. doi: 10.1016/j.precamres.2014.06.012 |
[20] | Lan Z W, Li X H, Zhu M Y, et al. , 2014b. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 255: 401-411. doi: 10.1016/j.precamres.2014.10.015 |
[21] | Lan Z W, Roberts N M W, Zhou Y, et al., 2022. Application of in situ U-Pb carbonate geochronology to Stenian-Tonian successions of North China. Precambrian Research, 370, 106551. |
[22] | Lan Z W, Wu S T, Wang F Y, et al., 2023. A ca. 290 Ma hydrothermal calcite in Cambrian dolostone. Marine and Petroleum Geology, 147, 106011. |
[23] | Lee† J K W, Williams I S, Ellis D J, 1997. Pb, U and Th diffusion in natural zircon[J]. Nature, 390(6656): 159-162. doi: 10.1038/36554 |
[24] | 李长民, 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 32(3): 161-174 Li C M, 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survey and Research, 32(3): 161-174. |
[25] | 李怀坤, 陆松年, 相振群, 等, 2007. 北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究[J]. 地质论评, 53(1): 132-140 Li H K, Lu S N, Xiang Z Q, et al. , 2007. SHRIMP U-Pb Geochronological research on detrital zircons from the Beidahe Complex-Group in the western segment of the North Qilian Mountains, Northwest China[J]. Geological Review, 53(1): 132-140. |
[26] | Li W J, Shi Z J, Yin G, et al. , 2021. Origin and tectonic implications of the early Middle Triassic tuffs in the western Yangtze Craton: Insight into whole-rock geochemical and zircon U-Pb and Hf isotopic signatures[J]. Gondwana Research, 93: 142-161. doi: 10.1016/j.gr.2020.12.030 |
[27] | 刘嘉麒, 孙春青, 游海涛, 2018. 全球火山灰年代学研究概述[J]. 中国科学(地球科学), 48(1): 1-29 Liu J Q, Sun C Q, You H T, 2018. An overview of global tephrochronology (in Chinese)[J]. Scientia Sinica(Terrae), 48(1): 1-29. |
[28] | Liu P J, Li X H, Chen S M, et al. , 2015. New SIMS U–Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 60(10): 958-963. doi: 10.1007/s11434-015-0790-3 |
[29] | Mcnaughton N J, Rasmussen B, Fletcher I R, 1999. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks[J]. Science, 285(5424): 78-80. doi: 10.1126/science.285.5424.78 |
[30] | Montano D, Gasparrini M, Gerdes A, et al. , 2021. In-situ U-Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy[J]. Earth and Planetary Science Letters, 568: 117011. doi: 10.1016/j.jpgl.2021.117011 |
[31] | Perez Loinaze V S, Vera E I, Passalia M G, et al. , 2013. High-precision U–Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia[J]. Journal of South American Earth Sciences, 48: 97-105. doi: 10.1016/j.jsames.2013.08.005 |
[32] | Phillips D, Matchan E L, Dalton H, et al. , 2022. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine – Closing the interlaboratory gap[J]. Chemical Geology, 597: 120815. doi: 10.1016/j.chemgeo.2022.120815 |
[33] | Pigage L C, Crowley J L, Pyle L J, et al. , 2012. U-Pb zircon age of an Ordovician tuff in southeast Yukon: implications for the age of the Cambrian-Ordovician boundary[J]. Canadian Journal of Earth Sciences, 49(6): 732-741. doi: 10.1139/e2012-017 |
[34] | Qin J, Zhong Y T, Zhu L D, et al. , 2021. Temporal constraints on the Dalazi Biota from Luozigou Basin, northeast China[J]. Cretaceous Research, 128: 104977. doi: 10.1016/j.cretres.2021.104977 |
[35] | Rasbury E T, Cole J M, 2009. Directly dating geologic events: U−Pb dating of carbonates[J]. Reviews of Geophysics, 47(3). |
[36] | Rasmussen B, 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology[J]. Earth-Science Reviews, 68(3-4): 197-243. |
[37] | Rasmussen B, Bose P K, Sarkar S, et al. , 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals[J]. Geology, 30(2): 103-106. doi: 10.1130/0091-7613(2002)030<0103:GUPZAF>2.0.CO;2 |
[38] | Ray J S, Martin M W, Veizer J N, et al. , 2002. U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India[J]. Geology, 30(2): 131-134. doi: 10.1130/0091-7613(2002)030<0131:UPZDAS>2.0.CO;2 |
[39] | Sarangi S, Gopalan K, Kumar S, 2004. Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution[J]. Precambrian Research, 132(1-2): 107-121. doi: 10.1016/j.precamres.2004.02.006 |
[40] | 桑树勋, 刘焕杰, 贾玉如, 1999. 华北中部太原组火山事件层与煤岩层对比——火山事件层的沉积学研究与展布规律(Ⅰ)[J]. 中国矿业大学学报, 28(1): 46-49 Sang S X, Liu H J, Jia Y L, 1999. Volcanic Event Strata and Correlation of Coals and Rocks of Taiyuan Formation in Central North China ——Sedimentary Study of Volcanic Event Strata and Their Distribution(I)[J]. Journal of China University of Mining & Technology, 28(1): 46-49. |
[41] | Sarna-Wojcicki A M, Pringle M S, Wijbrans J, 2000. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21431-21443. |
[42] | Schmitz M D, Bowring S A, 2001. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 65(15): 2571-2587. doi: 10.1016/S0016-7037(01)00616-0 |
[43] | Spears D A, 2012. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks[J]. International Journal of Coal Geology, 94: 22-31. doi: 10.1016/j.coal.2011.09.008 |
[44] | Sun S S, Mcdonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[45] | Taylor K G, Curtis C D, 1995. Stability and facies association of early diagenetic mineral assemblages: An example from a Jurassic ironstone-mudstone succession, U. K[J]. Journal of Sedimentary Research, 65(2a): 358-368. doi: 10.1306/D42680C2-2B26-11D7-8648000102C1865D |
[46] | 田和明, 代世峰, 李大华, 等, 2014. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评, 60(1): 169-177 Tian H M, Dai S F, Li D H, et al. , 2014. Geochemical Features of the Late Permian Tuff in Nanchuan District, Chongqing, Southwestern China[J]. Geological Review, 60(1): 169-177. |
[47] | Tucker R T, Roberts E M, Hu Y, et al. , 2013. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 24(2): 767-779. doi: 10.1016/j.gr.2012.12.009 |
[48] | 王剑, 付修根, 陈文西, 等, 2008. 北羌塘沃若山地区火山岩年代学及区域地球化学对比——对晚三叠世火山-沉积事件的启示[J]. 中国科学(D辑: 地球科学), 38(1): 33-43 Wang J, Fu X G, Chen W X, et al. , 2008. Geochronology and regional geochemistry of volcanic rocks in Woluo Mountain area, Northern Qiangtang: implications for Late Triassic volcano-sedimentary events[J]. Science in China (Series D: Earth Sciences), 38(1): 33-43. |
[49] | 王亚东, 张涛, 袁四化, 等, 2022. 碎屑锆石U-Pb年龄有效性初探——以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 40(1): 106-118 Wang Y D, Zhang T, Yuan S H, et al. , 2022. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 40(1): 106-118. |
[50] | 吴劲薇, 陈小明, 杨忠芳, 2001. 成岩伊利石K-Ar年龄分析及其意义[J]. 高校地质学报, 7(4): 444-448 doi: 10.16108/j.issn1006-7493.2001.04.010 Wu J W, Chen X M, Yang Z F, 2001. Diagenetic illite K-Ar age analysis and its significance[J]. Geological Journal of China Universities, 7(4): 444-448. doi: 10.16108/j.issn1006-7493.2001.04.010 |
[51] | 许锋, 朱增伍, 李长春, 等, 2019. 鄂尔多斯盆地东南部延长组长7段厚层熔结凝灰岩特征及其地质意义[J]. 现代地质, 33(2): 389-400 doi: 10.19657/j.geoscience.1000-8527.2019.02.14 Xu F, Zhu Z W, Li C C, et al. , 2019. Characteristics and Geological Significance of Thick Ignimbrite Beds of Yanchang Formation (Chang 7 Section) in Southeastern Ordos Basin[J]. Geoscience, 33(2): 389-400. doi: 10.19657/j.geoscience.1000-8527.2019.02.14 |
[52] | Yang C, Rooney Alan D, Condon Daniel J, et al. , 2021. The tempo of Ediacaran evolution[J]. Science Advances, 7(45): 10. |
[53] | 杨经绥, 吴才来, 夏林圻, 等, 2009. 火成岩的10年研究进展和未来的挑战[J]. 地质论评, 55(3): 406-419 doi: 10.3321/j.issn:0371-5736.2009.03.012 Yang J S, Wu C L, Xia L Q, et al. , 2009. A decade of progress and challenges for the future in igneous petrology[J]. Geological Review, 55(3): 406-419. doi: 10.3321/j.issn:0371-5736.2009.03.012 |
[54] | 杨競红, 蒋少涌, 凌洪飞, 等, 2005. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 12(2): 143-150 Yang J H, Jiang S Y, Ling H F, et al. , 2005. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 12(2): 143-150. |
[55] | 于炳松, 赵志丹, 苏尚国 2012. 岩石学(第二版)[M] 北京: 地质出版社. Yu B S, Zhao Z D, Su S G, 2012. Petrology (2nd edition)[M]. Beijing: Geological Publishing House. |
[56] | Zhang S J, Cao R, Lan Z W, et al. , 2022. SIMS Pb-Pb dating of phosphates in the Proterozoic strata of SE North China Craton: Constraints on eukaryote evolution[J]. Precambrian Research, 371: 106562. doi: 10.1016/j.precamres.2022.106562 |
[57] | 张彦, 陈克龙, 刘新宇, 2007. 沉积岩中自生伊利石K-Ar定年研究——存在问题及原因讨论[J]. 岩矿测试, 26(2): 117-120 doi: 10.3969/j.issn.0254-5357.2007.02.009 Zhang Y, Chen K L, Liu X Y, 2007. Study on the K-Ar Dating of Diagenetic Illite in Sedimentary Rock Samples——Question and Discussion[J]. Rock and Mineral Analysis, 26(2): 117-120. doi: 10.3969/j.issn.0254-5357.2007.02.009 |
[58] | Zhu R X, Li X H, Hou X G, et al. , 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science In China Series D-Earth Sciences, 52(9): 1385-1392. doi: 10.1007/s11430-009-0152-6 |
Microscopic images of typical tuffs showing its mineral composition (a-d from Chang et al., 2009; e-f from Liu et al., 2015).
TAS classification diagram for different types of tuff (Data from Wang et al., 2008; Tian et al., 2014; Xu et al., 2019; Arbuzov et al., 2016). Dacite tuff SS4 and SS5 (SS5 has SiO2 content greater than 80% and is not shown in the figure) are plotted to the region of rhyolite, whereas it was classified as dacite tuff in Wang et al. (2008).
Spider diagram of trace elements and distribution patterns of rare earth elements of different types of volcanic tuff (Primitive mantle from Sun and McDonough, 1989; data from Wang et al., 2008, Tian et al., 2014, Xu et al., 2019, Arbuzov et al., 2016)
Morphological characteristics of volcanic tuff zircon, detrital zircon and inherited zircon (a modified from Lan et al., 2014b; b modified from Li et al., 2021; c modified from Li et al., 2021)
Triangular plot showing the roundness of zircons in different types of rocks (See Table 3 in supplementary materials for data sources)
a: Scatter plot showing the length and width and frequency plot showing length of zircons in different types of rocks (See Table 3 in supplementary materials for data sources)
Microscopic images and zircon cathodoluminescence (CL) images of volcanic tuff from Vindhyan basin, Central India (from Rasmussen et al., 2002)
Field photographs, microscopic images and zircon cathodeluminescence images of tuffaceous sedimentary rock samples from the Gongdong Formation, Banxi Group, South China (modified from Lan et al., 2014b)
SIMS U-Pb Concordia diagram of Sample 2013SC05, Sample 2013SC06, and the youngest zircon population of the two (data from Lan et al., 2014b)