Citation: | XU Jianqi, GUO Chunli, YAN Jinyu, ZHANG Binwu, ZHAO Qianqian, ZHOU Rui. 2025. Genesis of the Mesozoic Hailuoling granite-pegmatite rare-metal deposit in southern Jiangxi Province—based on the trace-element study in mica. East China Geology, 46(1): 33-54. doi: 10.16788/j.hddz.32-1865/P.2024.05.010 |
The Hailuoling deposit, which is located in Shicheng County, southern Jiangxi, is a granitic pegmatite-type Nb-Ta-Zr-W-Sn-Li-Rb polymetallic deposit formed in the Mesozoic. Previous studies have focused on the geological characteristics of the deposit, but have not elucidated its formation mechanism yet. This research analyzed the micas in the fine-grained albite granite, greisenized granite, greisen, and pegmatite in the Hailuoling deposit by electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results show that micas in the fine-grained albite granite are dominated by lepidolite and zinnwaldite. In greisenized granite and greisen, micas are composed of protolithionite. The micas in pegmatite are mainly zinnwaldite and protolithionite. These rocks did not evolve according to the order of gradual increase of lithium content from granite → greisenized granite → greisen → pegmatite. Furthermore, compared to the greisenized granite and greisen, the micas in the fine-grained albite granite contain higher Rb, Li, and F but a lower K/Rb ratio. The regularity of major and trace elements possibly indicates a product of a more intense fractionation process of the same magmatic source. The sieve-like textures in the pegmatite suggested that the deposit experienced a transition from slow nucleation in the early stage to rapid undercooling in the later stage. By comparing the characteristics of the deposits and minerals in pegmatite between Hailuoling deposit and Koktokay deposit, it is inferred that the two deposits have similar ore-forming mechanism. Both of them experienced crystal fractionation dominated by melts, fluid exsolution, and the coexistence of melts and fluids. Some minerals crystallized under slow undercooling and solidified under rapid cooling conditions during the emplacement of the melt-fluid coexistence system, forming the granitic pegmatite-type deposit far away from the magma chamber and characterized with a mixture of various rock types.
[1] | BENSON T R, COBLE M A, DILLES J H. 2023. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones[J]. Science Advances,9(35):eadh8183. doi: 10.1126/sciadv.adh8183 |
[2] | BREITER K, ĎURIŠOVÁ J, HRSTKA T, KORBELOVÁ Z, HLOŽKOVÁ VAŇKOVÁ M, VAŠINOVÁ GALIOVÁ M, KANICKÝ V, RAMBOUSEK P, KNÉSL I, DOBEŠ P, DOSBABA M. 2017a. Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe[J]. Lithos,292-293:198-217. doi: 10.1016/j.lithos.2017.08.015 |
[3] | BREITER K, VAŇKOVÁ M, GALIOVÁ M V, KORBELOVÁ Z, KANICKÝ V. 2017b. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS[J]. Mineralogical Magazine,81(1):15-33. doi: 10.1180/minmag.2016.080.137 |
[4] | ČERNÝ P, LONDON D, NOVÁK M. 2012. Granitic pegmatites as reflections of their sources[J]. Elements,8(4):289-294. doi: 10.2113/gselements.8.4.289 |
[5] | ČERNÝ P, MEINTZER R E, ANDERSON A J. 1985. Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms[J]. The Canadian Mineralogist,23(3):381-421. |
[6] | CHEN Y J, HAN J S. 2024. Pegmatite-type mineralization of rare metals in the Altai orogenic belt, Xinjiang[J]. Acta Geologica Sinica,98(5):1452-1472 (in Chinese with English abstract). |
[7] | CUI Y Y, ZHAO Z D, JIANG T, YANG J B, DING C, SHENG D, HOU Q Y, HU Z C. 2013. Geochronology, geochemistry and petrogenesis of the Early Paleozoic granitoids in southern Jiangxi Province, China[J]. Acta Petrologica Sinica,29(11):4011-4024 (in Chinese with English abstract). |
[8] | ELLIS B S, NEUKAMPF J, BACHMANN O, HARRIS C, FORNI F, MAGNA T, LAURENT O, ULMER P. 2022. Biotite as a recorder of an exsolved Li-rich volatile phase in upper-crustal silicic magma reservoirs[J]. Geology,50(4):481-485. doi: 10.1130/G49484.1 |
[9] | GREW E S. 2020. The minerals of lithium[J]. Elements,16(4):235-240. doi: 10.2138/gselements.16.4.235 |
[10] | GREW E S, BOSI F, ROS L, KRISTIANSSON P, GUNTER M E, HåLENIUS U, TRUMBULL R B, YATES M G. 2018. Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000 Ma Sinceni Pluton, Swaziland: evidence for lithium–cesium–tantalum (LCT) pegmatites in the mesoarchean[J]. European Journal of Mineralogy,30(2):205-218. doi: 10.1127/ejm/2017/0029-2686 |
[11] | GREW E S, HAZEN R M. 2014. Beryllium mineral evolution[J]. American Mineralogist,99(5-6):999-1021. doi: 10.2138/am.2014.4675 |
[12] | GUO C L, ZHANG B W, ZHENG Y, XU J Q, ZHAO Q Q, YAN J Y, ZHOU R, FU W, HUANG K. 2024. Granite-type lithium deposits in China: important characteristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica,40(2):347-403 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.02 |
[13] | HAN Z H, XIONG X, LI J K, YAN Q G, JIANG P F. 2024. Muscovite as a potential tool for magmatic differentiation and identifying Li mineralization in the Jiajika regional pegmatites, West Sichuan[J]. Acta Petrologica Sinica,40(2):499-509 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.02.08 |
[14] | HAN J S, ZHAO Z H, HOLLINGS P, CHEN H Y. 2022. A 50 m. y. melting model for the rare metal–rich Koktokay pegmatite in the Chinese Altai: implications from a newly identified Jurassic granite[J]. GSA Bulletin,135(5-6):1467-1479. |
[15] | HU L Y, HOU S S, LIANG G A. 2015. Study on the metallogenic regularity and prospecting direction in the Hailuoling tantalum-tin polymetallic ore field in Jiangxi[J]. Mineral Exploration,6(2):132-141 (in Chinese with English abstract). |
[16] | LI J, HUANG X L, HE P L, LI W X, YU Y, CHEN L L. 2015. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta–Nb bearing granites[J]. Ore Geology Reviews,65:793-810. doi: 10.1016/j.oregeorev.2014.09.028 |
[17] | LI J K, LI P, YAN Q G, WANG D H, REN G L, DING X. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: an overview and synthesis[J]. Science China Earth Sciences,66(8):1702-1724 (in Chinese with English abstract). doi: 10.1007/s11430-022-1084-x |
[18] | LI J, ZHONG J W, YU Y, HUANG X L. 2013. Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China[J]. Geochimica,42(5):393-404 (in Chinese with English abstract). |
[19] | LINNEN R L, VAN LICHTERVELDE M, ČERNÝ P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements,8(4):275-280. doi: 10.2113/gselements.8.4.275 |
[20] | LIU D J, CHEN X W, WU S. 2018. Geological characteristics and prospecting criteria of pegmatite in Shicheng region, Jiangxi[J]. Mineral Resources and Geology,32(5):816-823 (in Chinese with English abstract). |
[21] | LONDON D. 2005. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos,80(1-4):281-303. doi: 10.1016/j.lithos.2004.02.009 |
[22] | LONDON D. 2009. The origin of primary textures in granitic pegmatites[J]. The Canadian Mineralogist,47(4):697-724. doi: 10.3749/canmin.47.4.697 |
[23] | LV Z H, ZHANG H, TANG Y. 2021. Anatexis origin of rare metal/earth pegmatites: evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos,380-381:105865. doi: 10.1016/j.lithos.2020.105865 |
[24] | MIAO Q F. 2018. Characteristics and mineralization of the Madi alkali feldspar granite in eastern Hebei Province[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract). |
[25] | MIAO Q F, QI Y F. 2020. Occurrence characteristics of Rubidium rare metal elements in Madi granite, eastern Hebei Province[J]. Mineral Exploration,11(8):1677-1683 (in Chinese with English abstract). |
[26] | MÜLLER A, ROMER R L, PEDERSEN R B. 2017. The sveconorwegian pegmatite province – thousands of pegmatites without parental granites[J]. The Canadian Mineralogist,55(2):283-315. doi: 10.3749/canmin.1600075 |
[27] | MUNK L A, BOUTT D F, HYNEK S A, MORAN B J. 2018. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin[J]. Chemical Geology,493:37-57. doi: 10.1016/j.chemgeo.2018.05.013 |
[28] | NIE F J, WANG F X, ZHAO Y A, SUN Y, CHAI H. 2013. Geological features and origin of Zhaojinggou Nb-Ta deposit in Wuchuan County, Inner Mongolia[J]. Mineral Deposits,32(4):730-743 (in Chinese with English abstract). |
[29] | QIN L X, RAO C, LIN X Q, WU R Q, WANG Q. 2021. Constraints of lithium on the petrogenesis and mineralization of granite in Xianghualing area, Hunan Province[J]. Geological Journal of China Universities,27(2):149-162 (in Chinese with English abstract). |
[30] | QIN K Z, ZHOU Q F, TANG D M, WANG C L, ZHU L Q. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai[J]. Acta Geologica Sinica,95(10):3039-3053 (in Chinese with English abstract). |
[31] | QIU R Z, ZHOU S, CHANG H L, DU S H, PENG S B. 1998. The evolution of Li-bearing micas from Xianghualing granites and their ore-prospecting significance in Hunan[J]. Journal of Guilin Insititute of Technology,18(2):145-153 (in Chinese with English abstract). |
[32] | RODA E, KELLER P, PESQUERA A, FONTAN F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia[J]. Mineralogical Magazine,71(1):41-62. doi: 10.1180/minmag.2007.071.1.41 |
[33] | RODA-ROBLES E, PESQUERA A, GIL-CRESPO P P, TORRES-RUIZ J, DE PARSEVAL P. 2006. Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain)[J]. European Journal of Mineralogy,18(3):369-377. doi: 10.1127/0935-1221/2006/0018-0369 |
[34] | SIMMONS W, FALSTER A, WEBBER K, RODA-ROBLES E, BOUDREAUX A P, GRASSI L R, FREEMAN G. 2016. Bulk composition of Mt. mica pegmatite, maine, USA: IMPLICATIONS for the origin of an lct type pegmatite by anatexis[J]. The Canadian Mineralogist,54(4):1053-1070. doi: 10.3749/canmin.1600017 |
[35] | SIRBESCU M L C, LEATHERMAN M A, STUDENT J J, BEEHR A R. 2009. Apatite textures and compositions as records of crystallization processes in the animikie red Ace pegmatite dike, Wisconsin, USA[J]. The Canadian Mineralogist,47(4):725-743. doi: 10.3749/canmin.47.4.725 |
[36] | SUN J D, XU M C, TAN G L, LV J S, WU B, ZHANG Y, JIANG X Q. 2023. Geochemical characteristics and metallogenic significance of Huangshan Nb-Ta deposit in northeast Jiangxi Province[J]. East China Geology,44(1):28-38 (in Chinese with English abstract). |
[37] | THOMAS R, DAVIDSON P. 2012. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews,46:32-46. doi: 10.1016/j.oregeorev.2012.02.006 |
[38] | THOMAS R, DAVIDSON P, BADANINA E. 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems[J]. Mineralogy and Petrology,96(3):129-140. |
[39] | THOMAS R, DAVIDSON P, SCHMIDT C. 2011. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark[J]. Contributions to Mineralogy and Petrology,161(2):315-329. doi: 10.1007/s00410-010-0533-z |
[40] | THOMAS R, WEBSTER J D, HEINRICH W. 2000. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy and Petrology,139(4):394-401. doi: 10.1007/s004100000120 |
[41] | TISCHENDORF G, GOTTESMANN B, FÖRSTER H J, TRUMBULL R B. 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine,61(409):809-834. doi: 10.1180/minmag.1997.061.409.05 |
[42] | TROCH J, HUBER C, BACHMANN O. 2022. The physical and chemical evolution of magmatic fluids in near-solidus silicic magma reservoirs: implications for the formation of pegmatites[J]. American Mineralogist,107(2):190-205. doi: 10.2138/am-2021-7915 |
[43] | VAN LICHTERVELDE M, GRÉGOIRE M, LINNEN R L, BÉZIAT D, SALVI S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology,155(6):791-806. doi: 10.1007/s00410-007-0271-z |
[44] | VIEIRA R, RODA-ROBLES E, PESQUERA A, LIMA A. 2011. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal)[J]. American Mineralogist,96(4):637-645. doi: 10.2138/am.2011.3584 |
[45] | VILLAROS A, PICHAVANT M. 2019. Mica-liquid trace elements partitioning and the granite-pegmatite connection: the St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology,528:119265. doi: 10.1016/j.chemgeo.2019.07.040 |
[46] | WANG R C, XIE L, ZHU Z Y, HU H. 2019. Micas: important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica,35(1):69-75 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.04 |
[47] | WEBBER K L, FALSTER A U, SIMMONS W B, FOORD E E. 1997. The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite–plite dikes[J]. Journal of Petrology,38(12):1777-1791. doi: 10.1093/petroj/38.12.1777 |
[48] | WU H H. 2020. Study on metallogenic mechanism of the Zhaojinggou Nb-Ta deposit in North China Craton, Inner Mongolia, China[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract). |
[49] | XIONG D Y, WANG X L, XING G F. 2023. A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits[J]. East China Geology,44(1):1-12 (in Chinese with English abstract). |
[50] | XU Z, ZHANG Y, PAN J Y, ZHANG F R, LOU F S, PENG L L, ZHOU Y, HE B. 2023. Petrogeochemical and geochronological characteristics of Hailuoling granite-type niobium-tantalum deposit in Shicheng, Jiangxi Province and its geological significance[J]. Acta Geologica Sinica,97(6):1874-1899 (in Chinese with English abstract). |
[51] | XU Z, ZHANG F R, ZHANG F S, LOU F S, ZHANG Y, PAN J Y, WU Z C, HE B, ZHOU Y, FU H M. 2024. Classification of hard rock lithium deposits in Jiangxi Province and its implication for prospecting[J]. East China Geology,45(1):62-77 (in Chinese with English abstract). |
[52] | YIN R, HAN L, HUANG X L, LI J, LI W X, CHEN L L. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: evidence from highly evolved granites in the Dahutang tungsten deposit, South China[J]. American Mineralogist,104(7):949-965. doi: 10.2138/am-2019-6796 |
[53] | YUAN L L, WANG Y F, LIU J P, SHAO Y J, LIU Z F, LI B, ZHENG X, DING T, ZHANG T D. 2022. Petro-geochemistry of Late Jurassic highly fractionated granites in the Xianghualing area of Hunan Province: Constraints on petrogenesis and rare-metal mineralization[J]. Acta Petrologica Sinica,38(7):2113-2138 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.18 |
[54] | ZHANG L, JIANG S Y. 2021. Two episodic Nb-Ta mineralization events and genesis of the Zhaojinggou rare-metal deposit, north margin of the North China Craton[J]. Ore Geology Reviews,131:103994 doi: 10.1016/j.oregeorev.2021.103994 |
[55] | ZHOU Q F, QIN K Z, TANG D M, DING J G, GUO Z L. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai[J]. Acta Petrologica Sinica,29(9):3004-3022 (in Chinese with English abstract). |
[56] | ZHOU Q F, QIN K Z, TANG D M, WANG C L, TIAN Y, SAKYI P A. 2015. Mineralogy of the Koktokay No. 3 pegmatite, Altai, NW China: implications for evolution and melt–fluid processes of rare-metal pegmatites[J]. European Journal of Mineralogy,27(3):433-457. doi: 10.1127/ejm/2015/0027-2443 |
[57] | 陈衍景, 韩金生. 2024. 新疆阿尔泰造山带伟晶岩型稀有金属矿床成矿作用[J]. 地质学报,98(5):1452-1472. |
[58] | 崔圆圆, 赵志丹, 蒋婷, 杨金豹, 丁聪, 盛丹, 侯青叶, 胡兆初. 2013. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因[J]. 岩石学报,29(11):4011-4024. |
[59] | 郭春丽, 张斌武, 郑义, 许箭琪, 赵迁迁, 闫金禹, 周睿, 符伟, 黄可. 2024. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制[J]. 岩石学报,40(2):347-403. |
[60] | 韩志辉, 熊欣, 李建康, 严清高, 姜鹏飞. 2024. 川西甲基卡区域伟晶岩分异演化及锂成矿过程: 来自白云母矿物学的约束[J]. 岩石学报,40(2):499-509. |
[61] | 胡论元, 侯珊珊, 梁国安. 2015. 江西海罗岭钽锡多金属矿田成矿规律及找矿方向探讨[J]. 矿产勘查,6(2):132-141. |
[62] | 李建康, 李鹏, 严清高, 王登红, 任广利, 丁欣. 2023. 松潘—甘孜—西昆仑花岗伟晶岩型稀有金属成矿带成矿规律[J]. 中国科学: 地球科学,53(8):1718-1740. |
[63] | 李洁, 钟军伟, 于洋, 黄小龙. 2013. 赣南西华山花岗岩的云母成分特征及其对岩浆演化与成矿过程的指示[J]. 地球化学,42(5):393-404. |
[64] | 刘东杰, 陈新卫, 吴素. 2018. 江西石城地区含矿伟晶岩地质特征及找矿标志[J]. 矿产与地质,32(5):816-823. |
[65] | 苗群峰. 2018. 冀东麻地碱长花岗岩特征及其成矿作用[D]. 北京: 中国地质大学(北京). |
[66] | 苗群峰, 齐云飞. 2020. 冀东麻地岩体铷等稀有金属元素赋存特征[J]. 矿产勘查,11(8):1677-1683. |
[67] | 聂凤军, 王丰翔, 赵宇安, 孙艳, 柴华. 2013. 内蒙古赵井沟大型铌钽矿床地质特征及成因[J]. 矿床地质,32(4):730-743. |
[68] | 覃莉茜, 饶灿, 林晓青, 吴润秋, 王琪. 2021. 湖南香花岭地区花岗岩中锂对成岩成矿的制约[J]. 高校地质学报,27(2):149-162. |
[69] | 秦克章, 周起凤, 唐冬梅, 王春龙, 朱丽群. 2021. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜[J]. 地质学报,95(10):3039-3053. doi: 10.3969/j.issn.0001-5717.2021.10.007 |
[70] | 邱瑞照, 周肃, 常海亮, 杜绍华, 彭松柏. 1998. 湖南香花岭花岗岩含锂云母类演化及其找矿意义[J]. 桂林工学院学报,18(2):145-153. |
[71] | 孙建东, 徐敏成, 谭桂丽, 吕劲松, 武彬, 张勇, 江小强. 2023. 赣东北黄山铌钽矿床成矿岩体地球化学特征及成矿意义[J]. 华东地质,44(1):28-38. |
[72] | 王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报,35(1):69-75. doi: 10.18654/1000-0569/2019.01.04 |
[73] | 吴欢欢. 2020. 内蒙古赵井沟铌钽矿床成矿机制研究[D]. 北京: 中国地质大学(北京). |
[74] | 熊定一, 王孝磊, 邢光福. 2023. 从超大陆旋回看前寒武纪伟晶岩型锂矿的形成[J]. 华东地质,44(1):1-12. |
[75] | 徐喆, 张勇, 潘家永, 张芳荣, 楼法生, 彭琳琳, 周渝, 贺彬. 2023. 江西石城海罗岭花岗岩型铌钽矿床岩石地球化学、年代学特征及其地质意义[J]. 地质学报,97(6):1874-1899. |
[76] | 徐喆, 张芳荣, 张福神, 楼法生, 张勇, 潘家永, 吴正昌, 贺彬, 周渝, 符海明. 2024. 江西硬岩型锂矿类型划分及其找矿启示[J]. 华东地质,45(1):62-77. |
[77] | 袁玲玲, 王祎帆, 刘建平, 邵拥军, 刘忠法, 李斌, 郑旭, 丁涛, 张天栋. 2022. 湖南香花岭晚侏罗世高分异花岗岩的岩石地球化学特征: 岩石成因与稀有金属成矿效应[J]. 岩石学报,38(7):2113-2138. doi: 10.18654/1000-0569/2022.07.18 |
[78] | 周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报,29(9):3004-3022. |
Simplified geology of Shicheng in Jiangxi, China (Modified from Xu et al.,2023)
Simplified geology (a) and section (b) of Hailuoling deposit (Modified from Xu et al.,2023)
Photos of rock specimens from Hailuoling deposit
BSE images of micas from Hailuoling deposit
Plot of Mg-Li vs. Fetot+Mn+Ti-AlVI for micas from Hailuoling deposit (Modified from Tischendorf et al.,1997)
Diagram of major elements in micas from different rocks of Hailuoling deposit
Box charts of representative trace elements in micas from Hailuoling deposit
Plots of K/Rb-Rb (a) and K/Cs-Cs (b) in micas from Hailuoling deposit
Metallogenic model of Hailuoling rare metals deposit