2025 Vol. 46, No. 1
Article Contents

WANG Guan, XIONG Xiaosong, LI Qiusheng, LU Zhanwu, ZHANG Xinyan, WU Guowei, WANG Sai. 2025. Deep seismic exploration and lithospheric structure in southeastern margin of Tibetan Plateau. East China Geology, 46(1): 16-32. doi: 10.16788/j.hddz.32-1865/P.2024.01.018
Citation: WANG Guan, XIONG Xiaosong, LI Qiusheng, LU Zhanwu, ZHANG Xinyan, WU Guowei, WANG Sai. 2025. Deep seismic exploration and lithospheric structure in southeastern margin of Tibetan Plateau. East China Geology, 46(1): 16-32. doi: 10.16788/j.hddz.32-1865/P.2024.01.018

Deep seismic exploration and lithospheric structure in southeastern margin of Tibetan Plateau

More Information
  • The southeastern margin of the Tibetan Plateau has experienced Tethys accretion orogeny and collision orogeny between the Indian continent and Eurasian continent, making it one of the typical regions of lateral collision between the Indian and Asian plates in the Cenozoic. Multiple complex tectonic movements have led to the widespread development of various metallic and non-metallic minerals, which formed the Sanjiang metallogenic belt. The lithosphere is the main carrier for recording continental tectonic evolution and mineralization. Revealing the layers’ structure of the lithosphere is of enormous significance for understanding the Tethyan evolution in the Sanjiang area, the dynamic process of the formation of the Tibetan Plateau, and the ore formation processes in the southeastern Tibetan Plateau. In this paper, we systematically review the research outcomes of seismic detection of crustal and mantle structures on the southeastern margin of the Tibetan Plateau. We obtained the lithospheric bottom interface, Moho depth, and upper crustal thickness (basement boundary) in the Sanjiang area through systematic sampling and interpolation. The results show that the overall variation of the basement interface in the study area overall varied intensely, exhibiting mirror symmetry with the Moho interface. The Moho depth gradually deepens from south to north. The thickness of the lithosphere is generally thin in the southwest and thick in the northeast, with an overall thickness range of 60~190 km.

  • 加载中
  • [1] BAI D H, UNSWORTH M J, MEJU M A, MA X B, TENG J W, KONG X R, SUN Y, SUN J, WANG L F, JIANG C S, ZHAO C P, XIAO P F, LIU M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience,3(5):358-362. doi: 10.1038/ngeo830

    CrossRef Google Scholar

    [2] BAI Z M, WANG C Y. 2004. Tomography research of the Zhefang-Binchuan and Menglian-Malong wide-angle seismic profiles in Yunnan Province[J]. Chinese Journal of Geophysics,47(2):257-267 (in Chinese with English abstract).

    Google Scholar

    [3] CAO H W, PEI Q M. 2015. Geochronological framework of magmatic rocks in western Yunnan (Tengchong-Lianghe)[J]. Acta Mineralogica Sinica, 35(S1):377(in Chinese with English abstract).

    Google Scholar

    [4] CHEN S W, WANG B S, TIAN X F, WANG F Y, LIU B F, LI L. 2016. Crustal structure from Yunxian-Ninglang wide-angle seismic reflection and refraction profile in northwestern Yunnan, China[J]. Seismology and Geology,38(1):91-106 (in Chinese with English abstract).

    Google Scholar

    [5] CHENG L. 2010. Research on tectonic characteristics in quaternary of the Dao Jie basin in Nu Jiang fault zone[D]. Beijing: Institute of Earthquake Forecasting, CEA (in Chinese with English abstract).

    Google Scholar

    [6] CUI Z Z, LU D Y, CHEN J P, ZHANG Z Y, HUANG L Y. 1987. The deep structural and tectonic features of the crust in Panxi area[J]. Acta Geophysica Sinica,30(6):566-580 (in Chinese with English abstract).

    Google Scholar

    [7] DAVYDOVA N I. 1975. Seismic properties of the Mohorovičić discontinuity:Seismicheskie svoistva granitsy Mokhorovichicha[M].

    Google Scholar

    [8] DENG J, HOU Z Q, MO X X, YANG L Q, WANG Q F, WANG C M. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys[J]. Mineral Deposits,29(1):37-42 (in Chinese with English abstract).

    Google Scholar

    [9] DENG T G, LONG D X. 1986. Basic strutures of the Xianshui river fault and the associated earthquakes[J]. Journal of Seismological Research,9(1):81-88 (in Chinese with English abstract).

    Google Scholar

    [10] DENG T G, LONG D X, QING Z G, HAUNG Y S. 1989. Xianshuihe active fault zone[M]. Chengdu: Sichuan Science and Technology Press (in Chinese with English abstract).

    Google Scholar

    [11] DENG J, WANG Q F, LI G J. 2016. Superimposed orogeny and composite metallogenic system: case study from the Sanjiang Tethyan belt, SW China[J]. Acta Petrologica Sinica,32(8):2225-2247 (in Chinese with English abstract).

    Google Scholar

    [12] DENG J, WANG Q F, LI G J, LI C S, WANG C M. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research,26(2):419-437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [13] DENG J, WANG Q F, LI G J, SANTOSH M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews,138:268-299. doi: 10.1016/j.earscirev.2014.05.015

    CrossRef Google Scholar

    [14] DENG Q D, ZHANG P Z, RAN Y K, YANG X P, MIN W, CHU Q Z. 2002. Basic characteristics of active tectonics of China[J]. Science in China Series D: Earth Sciences,46(4):356-372. doi: 10.1360/03yd9032

    CrossRef Google Scholar

    [15] DENG M G, ZHAO J X, LIU F X, YU H J, SUN B D, LIU F, LI S B. 2017. Exploration of ore-forming fluids and mineral sources of Pb Zn deposit in Shuitou Mountain, Zhenkang, western Yunnan Province—Evidence from isotopic geochemistry of H, O, S, and Pb[J]. Acta Petrologica Sinica,33(7):2001-2017 (in Chinese with English abstract).

    Google Scholar

    [16] DING R, REN J J, ZHANG S M, LÜ Y W, LIU H Y. 2018. Late Quaternary paleoearthquakes on the middle segment of the Lijiang-Xiaojinhe fault, Southeastern Tibet[J]. Seismology and Geology,40(3):622-640 (in Chinese with English abstract).

    Google Scholar

    [17] DONG L, SHEN X Z, QIAN Y P. 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,63(3):915-927 (in Chinese with English abstract).

    Google Scholar

    [18] FENG S Y, LI Q S, DENG X J, LI J Y, XIONG X S, LU Z W, LI W H, WANG X R, WU Q Y, SHI J H. 2020. Crustal skeleton structure of the lateral collision zone of the Qinghai-Tibet Plateau revealed by large-shot set of deep-reflecting profiling[J]. Chinese Journal of Geophysics,63(3):828-839 (in Chinese with English abstract).

    Google Scholar

    [19] FENG S Y, LIU B J, DENG X J, TAN Y L, JI J F, SHI J H. 2017. Shallow and deep structural characteristics of the west branch of the Nantinghe fault: evidence from deep seismic reflection profiling[J]. Chinese Journal of Geophysics,60(10):3863-3871 (in Chinese with English abstract).

    Google Scholar

    [20] GAO Y, SHI Y T, WANG Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics,63(3):802-816 (in Chinese with English abstract).

    Google Scholar

    [21] GUO X, CHEN Y, LI S D, DENG Y F, XU T, LI W, TAN P. 2017. Crustal shear-wave velocity structure and its geodynamic implications beneath the Emeishan large igneous province[J]. Chinese Journal of Geophysics,60(9):3338-3351 (in Chinese with English abstract).

    Google Scholar

    [22] HAN J T, NIU P, LIU L J, WU Y H, XIN Z H, LI Z Y, JIA X D. 2023. Research status and prospect of deep driving mechanism of Co-Occurrence of geothermal resources and seismic activity[J]. Journal of Jilin University (Earth Science Edition),53(6):1950-1968 (in Chinese with English abstract).

    Google Scholar

    [23] HE M X, FANG H, WANG X B, LU J Q, YUAN Y Z, BAI D W, DU B R, QIU G G, GAO B T. 2017. Deep conductivity characteristics of the southern Xianshuihe fault zone[J]. Chinese Journal of Geophysics,60(6):2414-2424 (in Chinese with English abstract).

    Google Scholar

    [24] HE L J, HUANG F, LIU Q Y, LI C R, WANG J Y. 2014. Tectono-thermal evolution of Sichuan basin in early Paleozoic[J]. Journal of Earth Sciences and Environment,36(2):10-17 (in Chinese with English abstract).

    Google Scholar

    [25] HE C S, WANG C Y, WU J P. 2004. A study on deep structure using teleseismic receiver function in western Yunnan[J]. Acta Seismologica Sinica,26(3):238-246 (in Chinese with English abstract).

    Google Scholar

    [26] HOU Z Q, LÜ Q T, WANG A J, LI X B, WANG Z Q, WANG E. 2003. Continental collision and related metallogeny: a case study of mineralization in Tibetan Orogen[J]. Mineral Deposits,22(4):319-333 (in Chinese with English abstract).

    Google Scholar

    [27] HUA Q, LIANG C T, YANG Y H, LI Z Q, SU J R. 2020. Study on ambient seismic noise tomography of eastern Tibetan Plateau based on simulated annealing method[J]. Chinese Journal of Geophysics,63(5):1787-1801 (in Chinese with English abstract).

    Google Scholar

    [28] HUANG J Z, YANG M L, WANG X L, BAI P Y. 2024. Geochemical characteristics of stream sediments and prospecting directions in Wagang area of Sichuan Province[J]. East China Geology, 45(3): 332-344 (in Chinese with English abstract).

    Google Scholar

    [29] HUANG Z C, WANG L S, XU M J, DING Z F, WU Y, WANG P, MI N, YU D Y, LI H. 2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters,432:354-362. doi: 10.1016/j.jpgl.2015.10.027

    CrossRef Google Scholar

    [30] HUANG X L, WU Z H, WU K G. 2018. Surface rupture of the 1515 Yongsheng earthquake in northwest Yunnan, and its seismogeological implications[J]. Acta Geologica Sinica (English Edition),92(4):1324-1333. doi: 10.1111/1755-6724.13629

    CrossRef Google Scholar

    [31] ISAAKS E H, SRIVASTAVA R M. 1989. An introduction to applied geostatistics[M]. New York: Oxford University Press.

    Google Scholar

    [32] JI L Y, LIU L W, HAO M. 2015. Crustal deformation characteristic of Zhenkang-Yongde region in Southwest Yunnan observed by InSAR technology[J]. Journal of Seismological Research,38(1):84-89 (in Chinese with English abstract).

    Google Scholar

    [33] LEKIĆ V, FISCHER K M. 2014. Contrasting lithospheric signatures across the Western United States revealed by Sp receiver functions[J]. Earth and Planetary Science Letters,402:90-98. doi: 10.1016/j.jpgl.2013.11.026

    CrossRef Google Scholar

    [34] LI P. 1993. Xianshuihe-Xiaojiang fault zone[M]. Beijing: Seismological Press (in Chinese with English abstract).

    Google Scholar

    [35] LI Y Q. 2009. Metamophic-deformation characteristics of Tuanliangzi-Daxinshan metamorphic zone, in Lancang River region, Yunnan[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [36] LI W C. 2010. Cenozoic 'thermal cycle' mineralization in Lanping Basin[J]. Mineral Deposits, 29(S1): 225-226 (in Chinese with English abstract).

    Google Scholar

    [37] LI S H, DENG C L, YAO H T, HUANG S, LIU C Y, HE H Y, PAN Y X, ZHU R X. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth,118(3):791-807. doi: 10.1002/jgrb.50129

    CrossRef Google Scholar

    [38] LI Q S, FENG S Y, BAI Z M, GAO Y, GAO S, XIONG X S, WANG X R, LANG C, HAN R B, WU Q Y, LU Z W, WANG H Y, LI W H, ZHANG H S, ZHANG X Y. 2018. New research progress on crust-upper mantle structure in the southeastern margin of Qinghai-Tibet Plateau, China[J]. Journal of Earth Sciences and Environment,40(6):757-778 (in Chinese with English abstract).

    Google Scholar

    [39] LI J Z, HU Q X, YU J Y, YANG F L, NAN Z L. 2013. The geological characteristics and ore seek direction of Panxi rift valley minerogenic belt in Sichuan Province[J]. China Mining Magazine,22(5):69-72,103 (in Chinese with English abstract).

    Google Scholar

    [40] LI D M, LI Q, CHEN W J. 2000. Volcanic activities in the Tengchong volcano area since Pliocene[J]. Acta Petrologica Sinica,16(3):362-370 (in Chinese with English abstract).

    Google Scholar

    [41] LI X Z, LIU Z Q, PAN G S, et al. 1991. Division of tectonic units and evolution of geohistory in Sanjiang area, Southwest China[M]//Editorial Committee of Chengdu Institute of Geology and Mineral Resources. Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, no. 13. Beijing: Geology Press (in Chinese with English abstract).

    Google Scholar

    [42] LI Y H, WU Q J, ZHANG R Q, TIAN X B, ZENG R S. 2008. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data[J]. Physics of the Earth and Planetary Interiors,170(1-2):134-146. doi: 10.1016/j.pepi.2008.08.006

    CrossRef Google Scholar

    [43] LI H L, ZHANG Y Q, ZHANG C H, WANG J C. 2016. Zircon U-Pb study of two-staged Oligo-Miocene migmatization along the Xianshuihe fault zone, East Tibet Plateau[J]. Earth Science Frontiers,23(2):222-237 (in Chinese with English abstract).

    Google Scholar

    [44] LI N, ZHU L Y, LIU L. 2018. Study on present-day locking degree and seismic hazard of the Lijiang-Xiaojinhe fault zone[J]. Journal of Seismological Research,41(2):244-250 (in Chinese with English abstract).

    Google Scholar

    [45] LIANG S M, GAN W J, SHEN C Z, XIAO G R, LIU J, CHEN W T, DING X G, ZHOU D M. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements[J]. Journal of Geophysical Research: Solid Earth,118(10):5722-5732. doi: 10.1002/2013JB010503

    CrossRef Google Scholar

    [46] LIN Z Y, HU H X, ZHANG W B, ZHANG H F, HE Z Q, LIN Z M, QIU T X. 1993. The preliminary interpretation of deep seismic sounding in western Yunnan[J]. Acta Seismologica Sinica, 15(4): 427-440 (in Chinese with English abstract).

    Google Scholar

    [47] LIU Q Y, LI Y, CHEN J H, GUO B, LI S C, WANG J, ZHANG X Q, QI S H. 2009. Wenchuan Ms8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle[J]. Chinese Journal of Geophysics,52(2):309-319 (in Chinese with English abstract).

    Google Scholar

    [48] LIU J P, LI J, WANG G H, SUN B D, HU S B, YU S Y, WANG X H, SONG D H. 2020. Geochemical characteritics and U-Pb age of the zircons from mafic intrusion in the southwestern margin of the Yangtze Plate: response to break-up of the Columbia supercontinent[J]. Geological Review,66(2):350-364 (in Chinese with English abstract).

    Google Scholar

    [49] LIU X L, LI W C, ZHOU Y M, ZHAO C F, WANG J Y, LI Q R, LI S K, WANG H, LU B D, ZHOU J H, LI F L, LIU X. 2022. Metallogenic system of polymetallic Fe-Cu-Au-Pb-Zn deposits in Jinchanghe ore concentration district, Baoshan block, Southwest China[J]. Sedimentary Geology and Tethyan Geology,42(1):133-150 (in Chinese with English abstract).

    Google Scholar

    [50] LU D Y, CUI Z Z, HUANG L Y, CHEN J P. 1989. The crustal structure of Lijiang-Xichang-Xinshizhen region in the north site of Kang-Dian S-N tectonic zone[J]. Bulletin of the 562 Comprehensive Geological Brigade Chinese Academy of Geological Sciences,(7-8):65-78 (in Chinese with English abstract).

    Google Scholar

    [51] LUO J L. 1990. Evolution and basic characteristics of Tethys orogenic zone, western Yunnan[J]. Yunnan Geology,9(4):247-290 (in Chinese with English abstract).

    Google Scholar

    [52] MAO X C.2016. Early Paleozoic geological characteristics and Tethys tectonic evolution of Baoshan-Zhenkang terrane and adjacent areas[D].Beijing:China University of Geosciences (Beijing ) (in Chi-nese with English abstract).

    Google Scholar

    [53] PAN S Z, WANG F Y, DUAN Y H, DENG X G, SONG X H, DUAN Y L, SUN Y N, ZHANG C J, YANG Y D. 2015. Basement structure of southern Yunnan and adjacent areas: the Zhenkang-Luxi deep seismic sounding profile[J]. Chinese Journal of Geophysics,58(11):3917-3927 (in Chinese with English abstract).

    Google Scholar

    [54] SENGÖR A M C. 1981. The evolution of Paleo-Tethys in the Tibetan sement of the Alpides in : Geological and Ecological studies of Qinghai- Tibet Plateau[M]. Beijing: Science Press:51-56.

    Google Scholar

    [55] SHANG L N, PAN J, CAO R, ZHOU Q C, KONG X H. 2024. Structural characteristics of the Binhai Fault Zone in Jiangsu offshore—implications from gravity and magnetic data[J]. East China Geology,45(1):101-114 (in Chinese with English abstract).

    Google Scholar

    [56] SHEN Z K, LÜ J N, WANG M, BÜRGMANN R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth,110(B11):B11409.

    Google Scholar

    [57] SHEN C Y, YANG G L, TAN H B, XUAN S B, WU G J, WANG J. 2015. Gravity anomalies and crustal density structure characteristics of profile Weixi-Guiyang[J]. Chinese Journal of Geophysics,58(11):3952-3964 (in Chinese with English abstract).

    Google Scholar

    [58] SHI P L, YANG T N, LIANG M J, XUE C D, FAN J W. 2015. Temporal and spatial variation in the Cenozoic strain of the Sanjiang orogenic belt, SW China: a brief review and new observations[J]. Acta Petrologica Sinica,31(11):3331-3352 (in Chinese with English abstract).

    Google Scholar

    [59] SONG X H, TIAN X F, WANG S J, LIU N F, MA C J. 2021. Development and application of deep seismic sounding method in China[J]. Journal of Geodesy and Geodynamics,41(11):1194-1199 (in Chinese with English abstract).

    Google Scholar

    [60] SUN C Q, CHEN Y, GAO E G. 2011. The crustal anisotropy and its geodynamical significance of the strong basin-range interaction zone beneath the east margin of Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics,54(5):1205-1214 (in Chinese with English abstract).

    Google Scholar

    [61] SUN P, WANG Q, WANG C Y, LIU J B, CHEN F, ZHANG J. 2023. Application of geophysical method in the interface exploration between backfill soil rock and bedrock of the mine pit[J]. East China Geology,44(4):439-447 (in Chinese with English abstract).

    Google Scholar

    [62] SUN J, XU C F, JIANG Z, SHI S L, WANG J J, HE M. 1989. The relationship between the electrical structure of crust and upper mantle and crustal tectonic activity in western Yunnan[J]. Seismology and Geology,11(1):35-45 (in Chinese with English abstract).

    Google Scholar

    [63] TAO Y, HU R Z, ZHU F L, MA Y S, YE L, CHENG Z T. 2010. Analysis of ore-forming age and dynamic background of the Hetaoping lead-zinc deposit in Baoshan, Yunnan[J]. Acta Petrologica Sinica,26(6):1760-1772 (in Chinese with English abstract).

    Google Scholar

    [64] TAPPONNIER P, XU Z Q, ROGER F, MEYER B, ARNAUD N, WITTLINGER G, YANG J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [65] TENG J W, WANG S Z, YAO Z X, XU Z W, ZHU Z W, YANG B P, ZHOU W H. 1980. Characteristics of the geophysical fields and plate tectonics of the Tibetan Plateau and its neighbouring regions[J]. Chinese Journal of Geophysics,23(3):254-268 (in Chinese with English abstract).

    Google Scholar

    [66] WANG C Y, CHANG L J, LÜ Z Y, QIN J Z, SU W, SILVER P, FLESCH L. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern[J]. Science in China Series D: Earth Sciences,50(8):1150-1160. doi: 10.1007/s11430-007-0053-5

    CrossRef Google Scholar

    [67] WANG C Y, HAN W B, WU J P, LOU H, BAI Z M. 2003a. Crustal structure beneath the Songpan-Garze orogenic belt[J]. Acta Seismologica Sinica,25(3):229-241 (in Chinese with English abstract).

    Google Scholar

    [68] WANG C Y, MOONEY W D, WANG X L, WU J P, LOU H, WANG F. 2002. A study on 3-D velocity structure of crust and upper mantle in Sichuan -Yunan region, China[J]. Acta Seismologica Sinica,15(1):1-17. doi: 10.1007/s11589-002-0042-x

    CrossRef Google Scholar

    [69] WANG C Y, WU J P, LOU H, ZHOU M D, BAI Z M. 2003b. P-wave crustal velocity structure in western Sichuan and eastern Tibetan region[J]. Science in China (Series D),46(S):254-265.

    Google Scholar

    [70] WANG Q, GAO Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532-2542. doi: 10.1007/s11430-014-4908-2

    CrossRef Google Scholar

    [71] WANG Q, GAO Y, SHI Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics,58(11):4068-4078 (in Chinese with English abstract).

    Google Scholar

    [72] WANG F Y, DUAN Y H, YANG Z X, ZHANG C K, ZHAO J R, ZHANG J S, ZHANG X K, LIU Q Y, ZHU A L, XU X W, LIU B F. 2008. Research on crustal velocity structure and active faults in the Yanyuan-Mabian seismic belt in western Sichuan[J]. Science in China Series D: Earth Sciences,38(5):611-621 (in Chinese with English abstract).

    Google Scholar

    [73] WANG F Y, PAN S Z, LIU L, LIU B F, ZHANG J S, DENG X G, MA C J, ZHANG C J. 2014. Wide angle seismic exploration of Yuxi-Lincang profile—the research of crustal structure of the red river fault zone and southern Yunnan[J]. Chinese Journal of Geophysics,57(10):3247-3258 (in Chinese with English abstract).

    Google Scholar

    [74] WANG Y Z, WANG E N, SHEN Z K, WANG M, GAN W J, QIAO X J, MENG G J, LI T M, TAO W, YANG Y L, CHENG J, LI P. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences,51(9):1267-1283. doi: 10.1007/s11430-008-0106-4

    CrossRef Google Scholar

    [75] WANG D B, WANG B D, TANG Y, LUO L, HE J, JIANG L L, ZHAO H S, CHEN L. 2021. Research progress and prospects of Tethys in Sanjiang orogenic belt, Southwest China[J]. Geological Bulletin of China,40(11):1799-1813 (in Chinese with English abstract).

    Google Scholar

    [76] WANG S J, WANG F Y, ZHANG J S, LIU B F, ZHANG C K, ZHAO J R, DUAN Y L, SONG X H, DENG X G, MA C J, SUN Y N, ZANG Y R, LI Y Q. 2015. The deep seismogenic environment of Lushan MS7.0 earthquake zone revealed by a wide-angle reflection/refraction seismic profile[J]. Chinese Journal of Geophysics,58(9):3193-3204 (in Chinese with English abstract).

    Google Scholar

    [77] WANG H F, WU J P, ZHOU S Y, FANG L H, WANG W L, LIU Y N. 2020. Rayleigh wave azimuthal anisotropy in the Southeastern Tibetan Plateau from Eikonal tomography[J]. Chinese Journal of Geophysics,63(3):1070-1084 (in Chinese with English abstract).

    Google Scholar

    [78] WEI W, XU J D, ZHAO D P, SHI Y L. 2012. East Asia mantle tomography: new insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences,60:88-103. doi: 10.1016/j.jseaes.2012.08.001

    CrossRef Google Scholar

    [79] WU Z H, LONG C X, FAN T Y, ZHOU C J, FENG H, YANG Z Y, TONG Y B. 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China,34(1):1-31 (in Chinese with English abstract).

    Google Scholar

    [80] WU J P, YANG T, WANG W L, MING Y H, ZHANG T Z. 2013. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics,56(7):2257-2267 (in Chinese with English abstract).

    Google Scholar

    [81] XIANG H F, HAN Z J, GUO S M, ZHANG W X, CHEN L C. 2004. Large-scale dextral strike-slip movement and asociated tectonic deformation along the red-river fault zone[J]. Seismology and Geology,26(4):597-610 (in Chinese with English abstract).

    Google Scholar

    [82] XIANG H F, XU X W, GUO S M, ZHANG W X, LI H W, YU G H. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since quaternary and its geologic-tectonic significance—shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology,24(2):188-198 (in Chinese with English abstract).

    Google Scholar

    [83] XIONG X S, WANG G, LI Q S, LU Z W, GAO R, FENG S Y, WU G W. 2022. Crustal structure of the Chuan-Dian block revealed by deep seismic sounding and its implications for the outward expansion of the east Tibetan Plateau[J]. Acta Geologica Sinica (English Edition),96(6):1932-1944. doi: 10.1111/1755-6724.14922

    CrossRef Google Scholar

    [84] XIONG S B, ZHENG Y, YIN Z X, ZENG X X, QUAN Y L, SUN K Z. 1993. THE 2-D structure and it's tectonic implications of the crust in the Lijiang-Pan-Zhihua-Zhehai region[J]. Acta Geologica Sinica,36(4):434-444 (in Chinese with English abstract).

    Google Scholar

    [85] XU X X, JI L Y, JIANG F Y, ZHANG W T. 2020. Study on current activity features of Jinshajiang fault zone based on GPS and small earthquakes[J]. Journal of Geodesy and Geodynamics,40(10):1062-1067 (in Chinese with English abstract).

    Google Scholar

    [86] XU X W, WEN X Z, ZHENG R Z, MA W T, SONG F M, YU G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences,46(2):210-226.

    Google Scholar

    [87] XU T, ZHANG M H, TIAN X B, ZHENG Y, BAI Z M, WU C L, ZHANG Z J, TENG J W. 2014. Upper crustal velocity of Lijiang-Qingzhen profile and its relationship with the seismogenic environment of the MS6.5 Ludian earthquake[J]. Chinese Journal of Geophysics,57(9):3069-3079 (in Chinese with English abstract).

    Google Scholar

    [88] XU Q, ZHAO J M, CUI Z X, LIU M Q. 2009. Structure of the crust and upper mantle beneath the southeastern Tibetan Plateau by P and S receiver functions[J]. Chinese Journal of Geophysics,52(12):3001-3008 (in Chinese with English abstract).

    Google Scholar

    [89] YANG H Y, PENG H C, HU J F. 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences,138:62-71. doi: 10.1016/j.jseaes.2017.02.001

    CrossRef Google Scholar

    [90] YANG L, YUAN W M, ZHU X Y, SHI Z. 2019. Zircon fission track thermochonology: new evidence on tectonic activities in the southern part of Sanjiang Tethys[J]. Acta Petrologica Sinica,35(5):1478-1488 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.10

    CrossRef Google Scholar

    [91] YANG Z X, WANG F Y, DUAN Y H, ZHANG C K, ZHAO J R, ZHANG J S, LIU B F. 2011. Basement structure of southeastern boundary region of Sichuan-Yunnan active block: analysis result of Yanyuan-Xichang-Zhaojue-Mahu deep seismic sounding profile[J]. Acta Seismologica Sinica,33(4):431-442 (in Chinese with English abstract).

    Google Scholar

    [92] YIN Z X, XIONG S B. 1992. Explosion seismic study for the 2-D crustal structure in Xichang-Dukou-Muding region[J]. Acta Geophysica Sinica,35(4):451-458 (in Chinese with English abstract).

    Google Scholar

    [93] ZHANG Z J, BAI Z M, WANG C Y, TANG J W, LÜ Q T, LI J L, LIU Y F, LIU Z K. 2005. The crustal structure under Sanjiang and its dynamic implications: revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan[J]. Science in China Series D: Earth Sciences,35(4):314-319.

    Google Scholar

    [94] ZHANG L, HU Y L, QIN M, DUAN Y, DUAN Y Z, PENG H C, ZHAO H. 2015. Study on crustal and lithosphere thicknesses of Tengchong volcanic area in Yunnan[J]. Chinese Journal of Geophysics,58(5):1622-1633 (in Chinese with English abstract).

    Google Scholar

    [95] ZHANG E H, LOU H, JIA S X, LI Y H. 2013. The deep crust structure characteristics beneath western Yunnan[J]. Chinese Journal of Geophysics,56(6):1915-1927 (in Chinese with English abstract).

    Google Scholar

    [96] ZHANG X, WANG Y H. 2009. Crustal and upper mantle velocity structure in Yunnan, Southwest China[J]. Tectonophysics,471(3-4):171-185. doi: 10.1016/j.tecto.2009.02.009

    CrossRef Google Scholar

    [97] ZHANG R Q, WU Y, GAO Z Y, FU Y V, SUN L, WU Q J, DING Z F. 2017. Upper mantle discontinuity structure beneath eastern and southeastern Tibet: new constraints on the Tengchong intraplate volcano and signatures of detached lithosphere under the western Yangtze Craton[J]. Journal of Geophysical Research: Solid Earth,122(2):1367-1380. doi: 10.1002/2016JB013551

    CrossRef Google Scholar

    [98] ZHANG Z, XU C M, MENG B Z, LIU C, TENG J W. 2007. Crustal reflectivity characters from the Eryuan-Jiangchuan wide-angle seismic profile[J]. Chinese Journal of Geophysics,50(4):1082-1088 (in Chinese with English abstract).

    Google Scholar

    [99] ZHANG Z, ZHAO B, ZHANG X, LIU C. 2006. Crustal structure beneath the wide-angle seismic profile between Simao and Zhongdian in Yunnan[J]. Chinese Journal of Geophysics,49(5):1377-1384 (in Chinese with English abstract).

    Google Scholar

    [100] ZHONG D L, DING L. 1993. From the evolution of Tethys in Sanjiang and its adjacent areas, the dispersion of Gondwana continent and the accretion of Asian continent and the accretion of Asia are discussed[M]//IGCP 321 CHINA WORKING GROUP. The proliferation of Asia. Beijing: Earthquake Press, 5-8 (in Chinese with English abstract).

    Google Scholar

    [101] ZHONG K H, LIU Z C, SHU L S, LI F Y, SHI Y S. 2004. The Cenozoic strike-slip kinematics of the Lancangjiang fault zone[J]. Geological Review,50(1):1-8 (in Chinese with English abstract).

    Google Scholar

    [102] ZHONG K, XU M J, WANG L S, DING Z Y, XU Z. 2005. Study on continental deformation features in Sichuan-Yunnan region from aeromagnetic and gravity data[J]. Advances in Earth Science,20(10):1089-1094 (in Chinese with English abstract).

    Google Scholar

    [103] ZHOU G Q, SU Y J, WANG S J. 2003. Study on the cause of the Yongsheng earthquake with M6.0 on Oct. 27, 2001[J]. Earthquake Research in China,19(2):166-174 (in Chinese with English abstract).

    Google Scholar

    [104] ZHOU K K, WU H, CHEN X W, ZHANG J J, XIA Y. 2017. Tectonic-basin evolution in Tengchong block, western Yunnan Province, and minerogenetic conditions of sandstone type uranium deposits[J]. Geological Bulletin of China,36(4):541-546 (in Chinese with English abstract).

    Google Scholar

    [105] 白志明, 王椿镛. 2004. 云南遮放—宾川和孟连—马龙宽角地震剖面的层析成像研究[J]. 地球物理学报,47(2):257-267. doi: 10.3321/j.issn:0001-5733.2004.02.012

    CrossRef Google Scholar

    [106] 曹华文, 裴秋明. 2015. 滇西(腾冲—梁河)岩浆岩年代学格架[J]. 矿物学报, 35(S1): 377.

    Google Scholar

    [107] 陈思文, 王宝善, 田晓峰, 王夫运, 刘宝峰, 李璐. 2016. 滇西北地区云县—宁蒗宽角反射/折射剖面结果[J]. 地震地质,38(1):91-106. doi: 10.3969/j.issn.0253-4967.2016.01.007

    CrossRef Google Scholar

    [108] 程理. 2010. 怒江断裂带道街盆地第四纪构造特征研究[D]. 北京: 中国地震局地震预测研究所.

    Google Scholar

    [109] 崔作舟, 卢德源, 陈纪平, 张之英, 黄立言. 1987. 攀西地区的深部地壳结构与构造[J]. 地球物理学报,30(6):566-580. doi: 10.3321/j.issn:0001-5733.1987.06.003

    CrossRef Google Scholar

    [110] 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用[J]. 矿床地质,29(1):37-42. doi: 10.3969/j.issn.0258-7106.2010.01.005

    CrossRef Google Scholar

    [111] 邓天岗, 龙德雄. 1986. 鲜水河断裂带的基本结构与地震[J]. 地震研究,9(1):81-88.

    Google Scholar

    [112] 邓天岗, 龙德雄, 卿志刚, 黄义书. 1989. 鲜水河活动断裂带[M]. 成都: 四川科学技术出版社.

    Google Scholar

    [113] 邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报,32(8):2225-2247.

    Google Scholar

    [114] 邓起东, 张培震, 冉永康, 杨晓平, 闵伟, 楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学(D辑):地球科学,32(12):1020-1030.

    Google Scholar

    [115] 邓明国, 赵剑星, 刘凤祥, 余海军, 孙柏东, 刘飞, 李仕斌. 2017. 滇西镇康水头山Pb-Zn矿床成矿流体及矿质来源探讨——H、O、S、Pb同位素地球化学证据[J]. 岩石学报,33(7):2001-2017.

    Google Scholar

    [116] 丁锐, 任俊杰, 张世民, 吕延武, 刘汉永. 2018. 丽江—小金河断裂中段晚第四纪古地震历史[J]. 地震地质,40(3):622-640.

    Google Scholar

    [117] 董蕾, 沈旭章, 钱银苹. 2020. 青藏高原东南缘Moho面速度密度跃变研究[J]. 地球物理学报,63(3):915-927.

    Google Scholar

    [118] 酆少英, 李秋生, 邓小娟, 李井元, 熊小松, 卢占武, 李文辉, 王晓冉, 吴庆宇, 石金虎. 2020. 深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J]. 地球物理学报,63(3):828-839.

    Google Scholar

    [119] 酆少英, 刘保金, 邓小娟, 谭雅丽, 姬计法, 石金虎. 2017. 南汀河西支断裂深浅构造特征——来自深地震反射剖面的证据[J]. 地球物理学报,60(10):3863-3871. doi: 10.6038/cjg20171016

    CrossRef Google Scholar

    [120] 高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报,63(3):802-816.

    Google Scholar

    [121] 郭希, 陈赟, 李士东, 邓阳凡, 徐涛, 李玮, 谭萍. 2017. 峨眉山大火成岩省地壳横波速度结构特征及其动力学意义[J]. 地球物理学报,60(9):3338-3351.

    Google Scholar

    [122] 韩江涛, 牛璞, 刘立家, 吴懿豪, 辛中华, 李卓阳, 贾晓东. 2023. 地热资源与地震活动共生深部驱动机制研究现状与展望[J]. 吉林大学学报(地球科学版),53(6):1950-1968.

    Google Scholar

    [123] 何梅兴, 方慧, 王绪本, 卢景奇, 袁永真, 白大为, 杜炳锐, 仇根根, 高宝屯. 2017. 鲜水河断裂带南段深部电性结构特征研究[J]. 地球物理学报,60(6):2414-2424. doi: 10.6038/cjg20170630

    CrossRef Google Scholar

    [124] 何丽娟, 黄方, 刘琼颍, 李春荣, 汪集旸. 2014. 四川盆地早古生代构造-热演化特征[J]. 地球科学与环境学报,36(2):10-17.

    Google Scholar

    [125] 贺传松, 王椿镛, 吴建平. 2004. 用远震接收函数研究滇西地区的深部结构[J]. 地震学报,26(3):238-246.

    Google Scholar

    [126] 侯增谦, 吕庆田, 王安建, 李晓波, 王宗起, 王二七. 2003. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J]. 矿床地质,22(4):319-333.

    Google Scholar

    [127] 花茜, 梁春涛, 杨宜海, 李忠权, 苏金蓉. 2020. 基于模拟退火法的青藏高原东缘噪声层析成像研究[J]. 地球物理学报,63(5):1787-1801.

    Google Scholar

    [128] 黄加忠,杨明龙,王晓龙,白平雁. 2024. 四川省瓦岗地区水系沉积物地球化学特征及找矿方向[J]. 华东地质,45(3):332-344.

    Google Scholar

    [129] 季灵运, 刘立炜, 郝明. 2015. 利用InSAR技术研究滇西南镇康—永德地区现今地壳形变特征[J]. 地震研究,38(1):84-89.

    Google Scholar

    [130] 李玶. 1993. 鲜水河—小江断裂带[M]. 北京: 地震出版社.

    Google Scholar

    [131] 李元庆. 2009. 云南澜沧江地区团梁子—大新山变质岩带变质变形特征[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [132] 李文昌. 2010. 兰坪盆地新生代“热循环”成矿作用[J]. 矿床地质,29(S1):225-226.

    Google Scholar

    [133] 李秋生, 酆少英, 白志明, 高原, 高嵩, 熊小松, 王晓冉, 郎超, 韩如冰, 吴庆宇, 卢占武, 王海燕, 李文辉, 张洪双, 张新彦. 2018. 青藏高原东南缘壳幔结构探测研究新进展[J]. 地球科学与环境学报,40(6):757-778.

    Google Scholar

    [134] 李建忠, 胡琴霞, 余金元, 杨福立, 南争路. 2013. 四川省攀西裂谷成矿带成矿地质特征及找矿方向[J]. 中国矿业,22(5):69-72,103.

    Google Scholar

    [135] 李大明, 李齐, 陈文寄. 2000. 腾冲火山区上新世以来的火山活动[J]. 岩石学报,16(3):362-370.

    Google Scholar

    [136] 李兴振, 刘增乾, 潘桂棠. 1991. 西南三江地区大地构造单元划分及地史演化[M]. 中国地质科学院 成都地质矿产研究所所刊 第13号. 北京: 地质出版社.

    Google Scholar

    [137] 李海龙, 张岳桥, 张长厚, 王继春. 2016. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘,23(2):222-237.

    Google Scholar

    [138] 李宁, 朱良玉, 刘雷. 2018. 丽江—小金河断裂带现今闭锁程度与地震危险性分析[J]. 地震研究,41(2):244-250.

    Google Scholar

    [139] 林中洋, 胡鸿翔, 张文彬, 章惠芬, 何正勤, 林真明, 邱陶兴. 1993. 滇西地区地壳上地幔速度结构特征的研究[J]. 地震学报,15(4):427-440.

    Google Scholar

    [140] 刘启元, 李昱, 陈九辉, 郭飚, 李顺成, 王峻, 张绪奇, 齐少华. 2009. 汶川Ms8.0地震: 地壳上地幔S波速度结构的初步研究[J]. 地球物理学报,52(2):309-319.

    Google Scholar

    [141] 刘军平, 李静, 王根厚, 孙柏东, 胡绍斌, 俞赛赢, 王小虎, 宋冬虎. 2020. 扬子板块西南缘基性侵入岩锆石年龄及地球化学特征——Columbia超级大陆裂解的响应[J]. 地质论评,66(2):350-364.

    Google Scholar

    [142] 刘学龙, 李文昌, 周云满, 赵成峰, 王基元, 李庆锐, 李守奎, 王海, 陆波德, 周杰虎, 李方兰, 刘雪. 2022. 滇西保山地块金厂河矿集区铁铜金铅锌多金属矿床成矿系统[J]. 沉积与特提斯地质,42(1):133-150.

    Google Scholar

    [143] 卢德源, 崔作舟, 黄立言, 陈纪平. 1989. 康滇南北构造带北段丽江—西昌—新市镇地区地壳结构[J]. 中国地质科学院562综合大队集刊, (7-8): 65-78.

    Google Scholar

    [144] 罗君烈. 1990. 滇西特提斯造山带的演化及基本特征[J]. 云南地质,9(4):247-290.

    Google Scholar

    [145] 毛晓长. 2016. 保山—镇康地块及邻区早古生代地质特征及特提斯构造演化[D].北京:中国地质大学(北京).

    Google Scholar

    [146] 潘素珍, 王夫运, 段永红, 邓晓果, 宋向辉, 段玉玲, 孙一男, 张彩军, 杨宇东. 2015. 滇南及临近地区基底结构——镇康—泸西深地震测深剖面结果[J]. 地球物理学报,58(11):3917-3927.

    Google Scholar

    [147] 尚鲁宁, 潘军, 曹瑞, 周青春, 孔祥淮. 2024. 基于重磁数据研究江苏岸外滨海断裂带及邻区构造特征[J]. 华东地质,45(1):101-114.

    Google Scholar

    [148] 申重阳, 杨光亮, 谈洪波, 玄松柏, 吴桂桔, 汪健. 2015. 维西—贵阳剖面重力异常与地壳密度结构特征[J]. 地球物理学报,58(11):3952-3964.

    Google Scholar

    [149] 史鹏亮, 杨天南, 梁明娟, 薛传东, 范金伟. 2015. 三江构造带新生代变形构造的时-空变化: 研究综述及新数据[J]. 岩石学报,31(11):3331-3352.

    Google Scholar

    [150] 宋向辉, 田晓峰, 王帅军, 刘宝峰, 马策军. 2021. 深地震测深在国内的发展与应用现状研究[J]. 大地测量与地球动力学,41(11):1194-1199.

    Google Scholar

    [151] 孙长青, 陈赟, 高尔根. 2011. 青藏高原东缘强烈盆山相互作用区的地壳各向异性特征及其动力学意义探讨[J]. 地球物理学报,54(5):1205-1214.

    Google Scholar

    [152] 孙平, 王谦, 王重阳, 刘俊伯, 陈峰, 张建. 2023. 物探方法在采矿坑回填土石与基岩分界面勘探中的应用[J]. 华东地质,44(4):439-447.

    Google Scholar

    [153] 孙洁, 徐常芳, 江钊, 史书林, 王继军, 何明. 1989. 滇西地区地壳上地幔电性结构与地壳构造活动的关系[J]. 地震地质,11(1):35-45.

    Google Scholar

    [154] 陶琰, 胡瑞忠, 朱飞霖, 马言胜, 叶霖, 程增涛. 2010. 云南保山核桃坪铅锌矿成矿年龄及动力学背景分析[J]. 岩石学报,26(6):1760-1772.

    Google Scholar

    [155] 滕吉文, 王绍舟, 姚振兴, 徐振武, 朱志文, 杨秉平, 周文虎. 1980. 青藏高原及其邻近地区的地球物理场特征与大陆板块构造[J]. 地球物理学报,23(3):254-268.

    Google Scholar

    [156] 王椿镛, 常利军, 吕智勇, 秦嘉政, 苏伟, SILVER P, FLESCH L. 2007. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J]. 中国科学(D辑): 地球科学,37(4):495-503.

    Google Scholar

    [157] 王椿镛, 韩渭宾, 吴建平, 楼海, 白志明. 2003a. 松潘—甘孜造山带地壳速度结构[J]. 地震学报,25(3):229-241.

    Google Scholar

    [158] 王椿镛, MOONEY W D, 王溪莉, 吴建平, 楼海, 王飞. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报,24(1):1-16.

    Google Scholar

    [159] 王椿镛, 吴建平, 楼海, 周民都, 白志明. 2003b. 川西藏东地区的地壳P波速度结构[J]. 中国科学(D辑):地球科学,33(S):181-189. doi: 10.3969/j.issn.1674-7240.2003.z1.020

    CrossRef Google Scholar

    [160] 王琼, 高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学(D辑): 地球科学,44(11):2440-2450.

    Google Scholar

    [161] 王琼, 高原, 石玉涛. 2015. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究[J]. 地球物理学报,58(11):4068-4078.

    Google Scholar

    [162] 王夫运 , 段永红 , 杨卓欣 , 张成科 , 赵金仁 , 张建狮 , 张先康 , 刘启元 ,朱艾斓 ,徐锡伟 , 刘宝峰.2008.川西盐源—马边地震带上地壳速度结构和活动断裂研究—— 高分辨率地震折射实验结果[J].中国科学D辑:地球科学,38(5):611-621.

    Google Scholar

    [163] 王夫运, 潘素珍, 刘兰, 刘宝峰, 张建狮, 邓晓果, 马策军, 张彩军. 2014. 玉溪—临沧剖面宽角地震探测——红河断裂带及滇南地壳结构研究[J]. 地球物理学报,57(10):3247-3258.

    Google Scholar

    [164] 王阎昭, 王恩宁, 沈正康, 王敏, 甘卫军, 乔学军, 孟国杰, 李铁明, 陶玮, 杨永林, 程佳, 李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学 (D辑): 地球科学,38(5):582-597.

    Google Scholar

    [165] 王冬兵, 王保弟, 唐渊, 罗亮, 贺娟, 姜丽莉, 赵鹤森, 陈莉. 2021. 西南三江特提斯研究进展与展望[J]. 地质通报,40(11):1799-1813.

    Google Scholar

    [166] 王帅军, 王夫运, 张建狮, 刘宝峰, 张成科, 赵金仁, 段玉玲, 宋向辉, 邓晓果, 马策军, 孙一男, 臧怡然, 李怡青. 2015. 利用宽角反射/折射地震剖面揭示芦山MS7.0地震震区深部孕震环境[J]. 地球物理学报,58(9):3193-3204. doi: 10.6038/cjg20150915

    CrossRef Google Scholar

    [167] 王怀富, 吴建平, 周仕勇, 房立华, 王未来, 刘雅宁. 2020. 青藏高原东南缘基于程函方程的面波方位各向异性研究[J]. 地球物理学报,63(3):1070-1084. doi: 10.6038/cjg2020N0104

    CrossRef Google Scholar

    [168] 吴中海, 龙长兴, 范桃园, 周春景, 冯卉, 杨振宇, 仝亚博. 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,34(1):1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002

    CrossRef Google Scholar

    [169] 吴建平, 杨婷, 王未来, 明跃红, 张天中. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报,56(7):2257-2267. doi: 10.6038/cjg20130713

    CrossRef Google Scholar

    [170] 向宏发, 韩竹军, 虢顺民, 张晚霞, 陈立春. 2004. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质,26(4):597-610.

    Google Scholar

    [171] 向宏发, 徐锡伟, 虢顺民, 张晚霞, 李洪武, 于贵华. 2002. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义——陆内活动地块横向构造的屏蔽作用[J]. 地震地质,24(2):188-198.

    Google Scholar

    [172] 熊绍柏, 郑晔, 尹周勋, 曾晓献, 全幼黎, 孙克忠. 1993. 丽江—攀枝花—者海地带二维地壳结构及其构造意义[J]. 地球物理学报,36(4):434-444.

    Google Scholar

    [173] 徐晓雪, 季灵运, 蒋锋云, 张文婷. 2020. 基于GPS和小震研究金沙江断裂带现今活动特征[J]. 大地测量与地球动力学,40(10):1062-1067.

    Google Scholar

    [174] 徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学( D辑):地球科学,33(S):151-162.

    Google Scholar

    [175] 徐涛, 张明辉, 田小波, 郑勇, 白志明, 武澄泷, 张忠杰, 滕吉文. 2014. 丽江—清镇剖面上地壳速度结构及其与鲁甸Ms6.5级地震孕震环境的关系[J]. 地球物理学报,57(9):3069-3079.

    Google Scholar

    [176] 徐强, 赵俊猛, 崔仲雄, 刘明乾. 2009. 利用接收函数研究青藏高原东南缘的地壳上地幔结构[J]. 地球物理学报,52(12):3001-3008.

    Google Scholar

    [177] 杨莉, 袁万明, 朱晓勇, 时贞. 2019. 三江特提斯南段多期构造活动的锆石裂变径迹证据[J]. 岩石学报,35(5):1478-1488.

    Google Scholar

    [178] 杨卓欣, 王夫运, 段永红, 张成科, 赵金仁, 张建狮, 刘宝峰. 2011. 川滇活动地块东南边界基底结构——盐源—西昌—昭觉—马湖深地震测深剖面结果[J]. 地震学报,33(4):431-442.

    Google Scholar

    [179] 尹周勋, 熊绍柏. 1992. 西昌—渡口—牟定地带二维地壳结构的爆炸地震研究[J]. 地球物理学报,35(4):451-458.

    Google Scholar

    [180] 张中杰, 白志明, 王椿镛, 滕吉文, 吕庆田, 李继亮, 刘一峰, 刘振宽. 2005. 三江地区地壳结构及动力学意义: 云南遮放—宾川地震反射/折射剖面的启示[J]. 中国科学( D辑): 地球科学,35(4):314-319.

    Google Scholar

    [181] 张龙, 胡毅力, 秦敏, 段毅, 段元泽, 彭恒初, 赵宏. 2015. 云南腾冲火山区地壳及岩石圈厚度研究[J]. 地球物理学报,58(5):1622-1633.

    Google Scholar

    [182] 张恩会, 楼海, 嘉世旭, 李永华. 2013. 云南西部地壳深部结构特征[J]. 地球物理学报,56(6):1915-1927.

    Google Scholar

    [183] 张智, 徐春明, 孟补在, 刘财, 滕吉文. 2007. 洱源—江川宽角地震剖面的地壳反射特征[J]. 地球物理学报,50(4):1082-1088.

    Google Scholar

    [184] 张智, 赵兵, 张晰, 刘财. 2006. 云南思茅—中甸地震剖面的地壳结构[J]. 地球物理学报,49(5):1377-1384.

    Google Scholar

    [185] 钟大赉, 丁林. 1993. 从三江及邻区特提斯带演化讨论冈瓦纳大陆离散与亚洲大陆增生[M]//IGCP第321项中国工作组. 亚洲的增生. 北京: 地震出版社, 5-8.

    Google Scholar

    [186] 钟康惠, 刘肇昌, 舒良树, 李凡友, 施央申. 2004. 澜沧江断裂带的新生代走滑运动学特点[J]. 地质论评,50(1):1-8.

    Google Scholar

    [187] 钟锴, 徐鸣洁, 王良书, 丁增勇, 徐震. 2005. 利用航磁、重力资料研究川滇地区大陆变形特征[J]. 地球科学进展,20(10):1089-1094.

    Google Scholar

    [188] 周光全, 苏有锦, 王绍晋. 2003. 2001年10月27日永胜6.0级地震的成因探讨[J]. 中国地震,19(2):166-174.

    Google Scholar

    [189] 周恳恳, 伍皓, 陈小炜, 张建军, 夏彧. 2017. 滇西腾冲地块构造-盆地演化与砂岩型铀矿成矿条件[J]. 地质通报,36(4):541-546. doi: 10.3969/j.issn.1671-2552.2017.04.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(119) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint