2025 Vol. 45, No. 3
Article Contents

CHAI Yawei, LI Lei, QIN Jun, LIU Jianbin, HE Miao, ZHANG Zhongpo, YANG Pan, ZHAO Xing. Three-dimensional seismic characterization of tidal sand ridges in submerged low-profile backgrounds and simulation of their depositional processes—An example from the Pinghu Formation of the Xihu Depression[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 109-119. doi: 10.16562/j.cnki.0256-1492.2024102701
Citation: CHAI Yawei, LI Lei, QIN Jun, LIU Jianbin, HE Miao, ZHANG Zhongpo, YANG Pan, ZHAO Xing. Three-dimensional seismic characterization of tidal sand ridges in submerged low-profile backgrounds and simulation of their depositional processes—An example from the Pinghu Formation of the Xihu Depression[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 109-119. doi: 10.16562/j.cnki.0256-1492.2024102701

Three-dimensional seismic characterization of tidal sand ridges in submerged low-profile backgrounds and simulation of their depositional processes—An example from the Pinghu Formation of the Xihu Depression

More Information
  • Tidal sand ridges are widely distributed in the Pinghu Formation in the Xihu Sag. Previous studies were carried out on single-factor analyses and speculations regarding both the formation process and the controlling factors of tidal sand ridges; however, the combined influence of multiple factors on the genesis of tidal sand ridges was largely ignored. Using drilling and logging data and seismic data, we studied the morphological characteristics and spatial distribution of the tidal sand ridges in the Pinghu Formation of the Xihu Sag, and numerically simulated the formation process and controlling factors of the tidal sand ridges. Results show that: ① The tidal sand ridges are developed during the recession period above T33, and several sand ridges are superimposed in the longitudinal direction. The tidal sand ridges are isolated and distributed in strips, and their directions are similar to that of the tidal currents; ② The formation of tidal sand ridges is mainly affected by tidal action. The river action transports the sand bodies to the estuary bay and forms a delta, providing material sources for the study area. At ebb tide, the sand bodies are transported to the sea, and at flood tide, the tidal current on the gentle slope is blocked by thicker sand bodies and deflected; the tidal hydrodynamics scour and erode the weak points between the sand bodies, transforming the sand bodies into isolated, long, and thin tidal sand ridges; ③ The formation of tidal sand ridges is also affected by tidal hydrodynamics and underwater low rises. At weak tidal hydrodynamics, the tide spreads the sand bodies onto the underwater low rises. With the tidal hydrodynamics increase, the sand bodies are carried to deeper areas and eroded and transformed into long tidal sand ridges. The underwater low rise play a blocking role. When the height of the underwater low rise is low, river action is strong, and the tidal action does not transform the sand bodies much; when the height increases, the river action is blocked from continuing to transport the sand bodies to the sea, the tidal action transports the sand bodies to the gentle slope, and finally form tidal sand ridges.

  • 加载中
  • [1] Du Y F, Zhang J C, Bian C W, et al. Multiscale spatio-temporal variations of suspended sediment fronts in the semi-enclosed Bohai Sea, China[J]. Journal of Geophysical Research: Oceans, 2023, 128(11):e2023JC019773. doi: 10.1029/2023JC019773

    CrossRef Google Scholar

    [2] Mashayek A. Large-scale impacts of small-scale ocean topography[J]. Journal of Fluid Mechanics, 2023, 964(F1), doi: 10.1017/jfm.2023.305.

    Google Scholar

    [3] Zhou Z Y, Ge J Z, Van Maren D S, et al. Study of sediment transport in a tidal channel-shoal system: Lateral effects and slack-water dynamics[J]. Journal of Geophysical Research: Oceans, 2021, 126(3):e2020JC016334. doi: 10.1029/2020JC016334

    CrossRef Google Scholar

    [4] Brand E, Montreuil A L, Houthuys R, et al. Relating hydrodynamic forcing and topographic response for tide-dominated sandy beaches[J]. Journal of Marine Science and Engineering, 2020, 8(3):151. doi: 10.3390/jmse8030151

    CrossRef Google Scholar

    [5] Lee H J, Jeon C K, Lim H S. Transgressive shelf sands around the Korean Peninsula: a brief review[J]. Ocean Science Journal, 2020, 55(4):465-475. doi: 10.1007/s12601-020-0035-5

    CrossRef Google Scholar

    [6] Tessier B, Poirier C, Fruergaard M, et al. Role of tidal range and coastline morphology on the evolution of two macrotidal sand spits[J]. The Depositional Record, 2025, 11(1):311-327. doi: 10.1002/dep2.304

    CrossRef Google Scholar

    [7] Liu Z X, Xia D X, Berne S, et al. Tidal deposition systems of China’s continental shelf, with special reference to the Eastern Bohai Sea[J]. Marine Geology, 1998, 145(3-4):225-253. doi: 10.1016/S0025-3227(97)00116-3

    CrossRef Google Scholar

    [8] Park S C, Han H S, Yoo D G. Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments[J]. Marine Geology, 2003, 193(1-2):1-18. doi: 10.1016/S0025-3227(02)00611-4

    CrossRef Google Scholar

    [9] Reynaud J Y, Tessier B, Auffret J P, et al. The offshore quaternary sediment bodies of the English Channel and its Western Approaches[J]. Journal of Quaternary Science, 2003, 18(3-4):361-371.

    Google Scholar

    [10] 周涵, 黄继新, 冯文杰, 等. 潮控河口湾沙坝发育特征及形成因素分析: 以钱塘江为例[J]. 地质论评, 2020, 66(1):101-112

    Google Scholar

    ZHOU Han, HUANG Jixin, FENG Wenjie, et al. Analysis on formation factors and development characteristics of sand bar in tide-dominated estuaries: a case study based on Qiantang River[J]. Geological Review, 2020, 66(1):101-112.]

    Google Scholar

    [11] 吴嘉鹏. 西湖凹陷平湖组潮汐沙脊的发现及意义[J]. 沉积学报, 2016, 34(5):924-929 doi: 10.14027/j.cnki.cjxb.2016.05.011

    CrossRef Google Scholar

    WU Jiapeng. Discovery of Tidal Sand Ridges and its significance of Pinghu Formation in Xihu Depression[J]. Acta Sedimentologica Sinica, 2016, 34(5):924-929.] doi: 10.14027/j.cnki.cjxb.2016.05.011

    CrossRef Google Scholar

    [12] 赵谦. 东海陆架盆地西湖凹陷西部斜坡带平湖组潮河联控沉积体系研究[D]. 中国地质大学博士学位论文, 2022, doi: 10.27492/d. cnki. gzdzu. 2022.000177

    Google Scholar

    ZHAO Qian. Tidal and river joint-dominated sedimentary system analysis of the Pinghu Formation in the West Slope Belt of Xihu Depression, East China Sea Shelf Basin[D]. Doctor Dissertation of China University of Geosciences, 2022, doi: 10.27492/d.cnki.gzdzu.2022.000177.].

    Google Scholar

    [13] 徐东浩, 秦兰芝, 李帅, 等. 西湖凹陷平北斜坡平湖组潮坪环境砂体沉积模式及控制因素[J]. 中国海上油气, 2024, 36(5):57-67

    Google Scholar

    XU Donghao, QIN Lanzhi, LI Shuai, et al. Sedimentary models and controlling factors of sand bodies in tidal flat environment of Pinghu Formation on Pingbei Slope of Xihu Sag[J]. China Offshore Oil and Gas, 2024, 36(5):57-67.]

    Google Scholar

    [14] Posamentier H W. Ancient shelf ridges—a potentially significant component of the transgressive systems tract: case study from offshore northwest Java[J]. AAPG Bulletin, 2002, 86(1):75-106.

    Google Scholar

    [15] 李俊良, 王海荣, 张建新, 等. 珠江口盆地西部珠江组潮流沙脊的分布、形态和水动力机制[J]. 石油与天然气地质, 2010, 31(5):671-677 doi: 10.11743/ogg20100517

    CrossRef Google Scholar

    LI Junliang, WANG Hairong, ZHANG Jianxin, et al. Distribution, geometry and hydrodynamic mechanism of tidal sand ridges in the Zhujiang Formation, the western Zhujiangkou Basin[J]. Oil & Gas Geology, 2010, 31(5):671-677.] doi: 10.11743/ogg20100517

    CrossRef Google Scholar

    [16] 吴太霏, 王华, 刘恩涛, 等. 珠三坳陷珠江组一段沉积体系演化过程及其控制因素[J]. 地质科技通报, 2024, 43(2):111-122

    Google Scholar

    WU Taifei, WANG Hua, LIU Entao, et al. Evolutionary and controlling factors of sedimentary system in the First Member of the Zhujiang Formation in the Zhu III Depression[J]. Geoscience and Technology Bulletin, 2024, 43(2):111-122.]

    Google Scholar

    [17] 李伟, 左倩媚, 刘平, 等. 珠江口盆地文昌凹陷浅海陆架砂体沉积特征及油气勘探意义[J]. 科学技术与工程, 2019, 19(33):94-100

    Google Scholar

    LI Wei, ZUO Qianmei, LIU Ping, et al. Sedimentary characteristics of continental shelf sand bodies and their Significance for the Oil-gas Exploration in Wenchang Sag of Pearl River Mouth Basin[J]. Science Technology and Engineering, 2019, 19(33):94-100.]

    Google Scholar

    [18] 宋广增, 李明, 张帅, 等. 珠三坳陷西北部浅海陆架砂体时空演化及成因机制[J]. 海洋学报, 2023, 45(2):62-73

    Google Scholar

    SONG Guangzeng, LI Ming, ZHANG Shuai, et al. Temporal and spatial evolution and genetic mechanism of shallow continental shelf sandbodies in the Northwestern Zhusan Depression[J]. Acta Oceanologica Sinica, 2023, 45(2):62-73.]

    Google Scholar

    [19] 谢世文, 李庆明, 柳保军, 等. 惠州X油区潮流沙脊特征及对开发的指导意义[J]. 特种油气藏, 2015, 22(2):70-73

    Google Scholar

    XIE Shiwen, LI Qingming, LIU Baojun, et al. Features of tidal sand ridges and their instructive significance to Development in X Oil Zone, Huizhou[J]. Specialty Oil and Gas Reservoirs, 2015, 22(2):70-73.]

    Google Scholar

    [20] Xing F, Wang Y P, Ni W F, et al. Modeling multi-decadal morphological evolution of the radial-shaped sand ridges in the Southern Yellow Sea, China[J]. CATENA, 2024, 238:107884. doi: 10.1016/j.catena.2024.107884

    CrossRef Google Scholar

    [21] 王超, 陈忠云, 秦兰芝, 等. 西湖凹陷天台斜坡带物源交汇区古近系碎屑锆石形态学与年代学示踪[J]. 石油地质与工程, 2023, 37(6):29-35,41

    Google Scholar

    WANG Chao, CHEN Zhongyun, QIN Lanzhi, et al. Morphological and chronological tracing of Paleogene detrital zircons in the provenance intersection area of Tiantai slope in Xihu Sag[J]. Petroleum Geology and Engineering, 2023, 37(6):29-35,41.]

    Google Scholar

    [22] 武法东, 陆永潮, 李思田, 等. 东海陆架盆地第三系层序地层格架与海平面变化[J]. 地球科学—中国地质大学学报, 1998, 23(1):13-20

    Google Scholar

    WU Fadong, LU Yongchao, LI Sitian, et al. Tertiary sequence stratigraphic framework and sea-level changes in the East China Sea Shelf Basin[J]. Earth Science—Journal of China University of Geosciences, 1998, 23(1):13-20.]

    Google Scholar

    [23] 蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1):141-153

    Google Scholar

    JIANG Yiming, SHAO Longyi, LI Shuai, et al. Deposition system and stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag[J]. Geoscience, 2020, 34(1):141-153.]

    Google Scholar

    [24] 刘景彦, 林畅松, 肖建新, 等. 东海西湖凹陷第三系主要不整合面的特征、剥蚀量的分布及其意义[J]. 现代地质, 1999, 13(4):432-438

    Google Scholar

    LIU Jingyan, LIN Changsong, XIAO Jianxin, et al. Characteristics and erosions of the major tertiary unconformities and their significance to petroleum exploration in the Xihu Trough, The East China Sea[J]. Geoscience, 1999, 13(4):432-438.]

    Google Scholar

    [25] 张建培, 徐发, 钟韬, 等. 东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化[J]. 海洋地质与第四纪地质, 2012, 32(1):35-41

    Google Scholar

    ZHANG Jianpei, XU Fa, ZHONG Tao, et al. Sequence stratigraphic models and sedimentary evolution of Pinghu and Huagang Formations in Xihu Trough[J]. Marine Geology & Quaternary Geology, 2012, 32(1):35-41.]

    Google Scholar

    [26] 张兰, 何贤科, 段冬平, 等. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究[J]. 海洋地质与第四纪地质, 2023, 43(4):140-149

    Google Scholar

    ZHANG Lan, HE Xianke, DUAN Dongping, et al. Seismic sedimentological analysis of coal stratigraphy of Pinghu Formation in the Pinghu Slope Belt, Xihu Sag, East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(4):140-149.]

    Google Scholar

    [27] 江东辉, 杜学斌, 李昆, 等. 东海西湖凹陷保俶斜坡带平湖组“古地貌—古水系—古坡折”特征及其对沉积体系的控制[J]. 石油实验地质, 2022, 44(5):771-779,789 doi: 10.11781/sysydz202205771

    CrossRef Google Scholar

    JIANG Donghui, DU Xuebin, LI Kun, et al. Distribution of sedimentary system multi-controlled by palaeo-geomorphology, water system and break during the deposition of Pinghu Formation, Baochu slope belt, Xihu Sag, East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2022, 44(5):771-779,789.] doi: 10.11781/sysydz202205771

    CrossRef Google Scholar

    [28] Schuurman F, Marra W A, Kleinhans M G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4):2509-2527. doi: 10.1002/2013JF002896

    CrossRef Google Scholar

    [29] 刘雪萍, 卢双舫, 唐明明, 等. 河流-潮汐耦合控制下河口湾坝体沉积动力学数值模拟[J]. 地球科学, 2021, 46(8):2944-2957

    Google Scholar

    LIU Xueping, LU Shuangfang, TANG Mingming, et al. Numerical simulation of sedimentary dynamics to estuarine bar under the coupled fluvial-tidal control[J]. Earth Science, 2021, 46(8):2944-2957.]

    Google Scholar

    [30] Winterwerp J C. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: Indications for a regime shift in response to channel deepening[J]. Ocean Dynamics, 2011, 61(2-3):203-215. doi: 10.1007/s10236-010-0332-0

    CrossRef Google Scholar

    [31] 彭旸, Steel R J, 龚承林, 等. 潮汐沉积过程及沉积特征研究综述[J]. 古地理学报, 2023, 25(5):1069-1089

    Google Scholar

    PENG Yang, Steel R J, GONG Chenglin, et al. A review on tidal depositional processes and characteristics[J]. Journal of Palaeogeography, 2023, 25(5):1069-1089.]

    Google Scholar

    [32] Leuven J R F W, Braat L, Van Dijk W M, et al. Growing forced bars determine nonideal estuary planform[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(11):2971-2992. doi: 10.1029/2018JF004718

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(67) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint