2025 Vol. 45, No. 3
Article Contents

LI Shixing, SUN Yunbao, CAO Hong, GENG Wei, CHEN Wei, ZHANG Xilin, ZHANG Dong, XU Cuiling, CHEN Ye, ZHOU Yucheng, Lyu Taiheng, SUN Zhilei. Research progress on natural gas hydrate accumulation in shallow marine layers[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 120-131. doi: 10.16562/j.cnki.0256-1492.2024111502
Citation: LI Shixing, SUN Yunbao, CAO Hong, GENG Wei, CHEN Wei, ZHANG Xilin, ZHANG Dong, XU Cuiling, CHEN Ye, ZHOU Yucheng, Lyu Taiheng, SUN Zhilei. Research progress on natural gas hydrate accumulation in shallow marine layers[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 120-131. doi: 10.16562/j.cnki.0256-1492.2024111502

Research progress on natural gas hydrate accumulation in shallow marine layers

More Information
  • In the process of accelerating the global transition towards a low-carbon energy framework, natural gas hydrates, as a clean energy source with enormous energy potential, have become a core research area in the energy field. In the accelerated global move towards a low-carbon energy framework, natural gas hydrates, as a clean energy source with enormous energy potential, have become a core research area in the energy field. In particular, shallow marine natural gas hydrates have garnered significant interest due to their shallow depth, easy mining, sensitive to environmental conditions, and other attributes. In this study, we reviewed the latest research findings on the characteristics of shallow marine natural gas hydrate systems and examined the critical factors that influence their formation, including geological processes, gas sources, migration pathways, and reservoir properties. We also clarified the distribution characteristics of typical shallow natural gas hydrate deposits in the world and explored their critical roles of play in the oceanic carbon cycling and the shaping of deep-sea ecosystems. Furthermore, we discussed the promising prospects for the commercial development of shallow natural gas hydrates, and looked ahead the future research ideas and plans, to highlight this special potential energy resource and enhance the societal awareness and interest in the industrial exploitation of natural gas hydrates.

  • 加载中
  • [1] Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4):185-199. doi: 10.1016/j.jpgl.2004.09.005

    CrossRef Google Scholar

    [2] Giavarini C, Hester K. Environmental issues with gas hydrates[M]//Giavarini C, Hester K. Gas Hydrates: Immense Energy Potential and Environmental Challenges. London: Springer, 2011: 159-172.

    Google Scholar

    [3] Schulz H D. Conceptual models and computer models[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin Heidelberg: Springer, 2006: 513-547.

    Google Scholar

    [4] Collett T S, Boswell R, Waite W F, et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology, 2019, 108:39-142. doi: 10.1016/j.marpetgeo.2019.05.023

    CrossRef Google Scholar

    [5] Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104:29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    CrossRef Google Scholar

    [6] Bahr A, Pape T, Abegg F, et al. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics–Results from the combination of CT imaging with mineralogical and stable isotope analyses[J]. Marine and Petroleum Geology, 2010, 27(9):1819-1829. doi: 10.1016/j.marpetgeo.2010.08.005

    CrossRef Google Scholar

    [7] Wei J G, Pape T, Sultan N, et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology, 2015, 59:359-370. doi: 10.1016/j.marpetgeo.2014.09.013

    CrossRef Google Scholar

    [8] Hsu S K, Lin S S, Wang S Y, et al. Seabed gas emissions and submarine landslides off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29(1):7-15. doi: 10.3319/TAO.2016.10.04.01

    CrossRef Google Scholar

    [9] Liu L P, Chu F Y, Wu N Y, et al. Gas sources, migration, and accumulation systems: the shallow subsurface and near-seafloor gas hydrate deposits[J]. Energies, 2022, 15(19):6921. doi: 10.3390/en15196921

    CrossRef Google Scholar

    [10] Weinberger J L, Brown K M. Fracture networks and hydrate distribution at Hydrate Ridge, Oregon[J]. Earth and Planetary Science Letters, 2006, 245(1-2):123-136. doi: 10.1016/j.jpgl.2006.03.012

    CrossRef Google Scholar

    [11] Maglalang E J M, Armada L T, Santos M C, et al. Bottom simulating reflectors in the Manila Trench forearc and its implications on the occurrence of gas hydrates in the region[J]. Marine and Petroleum Geology, 2023, 158:106538. doi: 10.1016/j.marpetgeo.2023.106538

    CrossRef Google Scholar

    [12] Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2008, 270(1-2):95-105. doi: 10.1016/j.jpgl.2008.03.024

    CrossRef Google Scholar

    [13] Römer M, Torres M, Kasten S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia[J]. Earth and Planetary Science Letters, 2014, 403:166-177. doi: 10.1016/j.jpgl.2014.06.036

    CrossRef Google Scholar

    [14] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95:37-53. doi: 10.1016/j.dsr.2014.10.005

    CrossRef Google Scholar

    [15] 杨竞红, 蒋少涌, 凌洪飞. 天然气水合物的成因及其碳同位素判别标志[J]. 海洋地质动态, 2001, 17(8):1-4

    Google Scholar

    YANG Jinghong, JIANG Shaoyong, LING Hongfei. The genesis of natural gas hydrates and their carbon isotope discrimination signatures[J]. Marine Geology Frontiers, 2001, 17(8):1-4.]

    Google Scholar

    [16] Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: a review[C]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards. AAPG, 2009: 146-219.

    Google Scholar

    [17] Brooks J M, Field M E, Kennicutt II M C. Observations of gas hydrates in marine sediments, offshore northern California[J]. Marine Geology, 1991, 96(1-2):103-109. doi: 10.1016/0025-3227(91)90204-H

    CrossRef Google Scholar

    [18] 狄永军, 郭正府, 李凯明, 等. 天然气水合物成因探讨[J]. 地球科学进展, 2003, 18(1):138-143 doi: 10.3321/j.issn:1001-8166.2003.01.020

    CrossRef Google Scholar

    DI Yongjun, GUO Zhengfu, LI Kaiming, et al. Discussion of the origin of gas hydrates[J]. Advances in Earth Science, 2003, 18(1):138-143.] doi: 10.3321/j.issn:1001-8166.2003.01.020

    CrossRef Google Scholar

    [19] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates[J]. Geology, 2015, 43(5):371-374. doi: 10.1130/G36440.1

    CrossRef Google Scholar

    [20] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate[J]. Geochimica et Cosmochimica Acta, 2004, 68(23):4915-4933. doi: 10.1016/j.gca.2004.05.037

    CrossRef Google Scholar

    [21] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3625-3645. doi: 10.1016/j.gca.2006.04.016

    CrossRef Google Scholar

    [22] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000

    CrossRef Google Scholar

    [23] Lai H F, Qiu H J, Kuang Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136:105486. doi: 10.1016/j.marpetgeo.2021.105486

    CrossRef Google Scholar

    [24] Huang W, Meng M M, Zhang W, et al. Geological, geophysical, and geochemical characteristics of deep-routed fluid seepage and its indication of gas hydrate occurrence in the Beikang Basin, Southern South China Sea[J]. Marine and Petroleum Geology, 2022, 139:105610. doi: 10.1016/j.marpetgeo.2022.105610

    CrossRef Google Scholar

    [25] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7):1889-1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [26] 张光学, 梁金强, 陆敬安, 等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10

    Google Scholar

    ZHANG Guangxue, LIANG Jinqiang, LU Jing’an, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.]

    Google Scholar

    [27] 孙治雷, 李清, 吴能友, 等. 海洋浅表层天然气水合物成矿特征及探测技术[M]. 北京: 海洋出版社, 2023: 1-295

    Google Scholar

    SUN Zhilei, LI Qing, WU Nengyou, et al. Study on Water Resources Management and Water Supply Security Measures for the Hilly Areas Between the Huaihe and the Yangtze River, Anhui Province[M]. Beijing: China Ocean Press, 2023: 1-295.]

    Google Scholar

    [28] Bahk J J, Kim D H, Chun J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from second Ulleung Basin gas hydrate drilling expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47:21-29. doi: 10.1016/j.marpetgeo.2013.05.006

    CrossRef Google Scholar

    [29] Winters W J, Wilcox-Cline R W, Long P, et al. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems[J]. Marine and Petroleum Geology, 2014, 58:139-167. doi: 10.1016/j.marpetgeo.2014.07.024

    CrossRef Google Scholar

    [30] 雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820 doi: 10.7623/syxb202106009

    CrossRef Google Scholar

    LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.] doi: 10.7623/syxb202106009

    CrossRef Google Scholar

    [31] Ma G Z, Zhan L S, Lu H L, et al. Structures in shallow marine sediments associated with gas and fluid migration[J]. Journal of Marine Science and Engineering, 2021, 9(4):396. doi: 10.3390/jmse9040396

    CrossRef Google Scholar

    [32] Liu L P, Sun Z L, Zhang L, et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica: English Edition, 2019, 93(3):731-755. doi: 10.1111/1755-6724.13876

    CrossRef Google Scholar

    [33] Vardaro M F, MacDonald I R, Bender L C, et al. Dynamic processes observed at a gas hydrate outcropping on the continental slope of the Gulf of Mexico[J]. Geo-Marine Letters, 2006, 26(1):6-15. doi: 10.1007/s00367-005-0010-2

    CrossRef Google Scholar

    [34] Chen D F, Cathles III L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1):2058.

    Google Scholar

    [35] Matsumoto R, Tanahashi M, Kakuwa Y, et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea: Japan Sea Shallow Gas Hydrate Project[J]. Fire in the Ice, 2017, 17(1):1-6.

    Google Scholar

    [36] Snyder G T, Sano Y, Takahata N, et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology, 2020, 535:119462. doi: 10.1016/j.chemgeo.2020.119462

    CrossRef Google Scholar

    [37] Freire A F M, Matsumoto R, Santos L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10):1967-1978. doi: 10.1016/j.marpetgeo.2010.10.004

    CrossRef Google Scholar

    [38] Ryu B J, Riedel M. Gas hydrates in the Ulleung Basin, east sea of Korea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2017, 28(6):943-963. doi: 10.3319/TAO.2017.10.21.01

    CrossRef Google Scholar

    [39] Bahk J J, Kim J H, Kong G S, et al. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea[J]. Geosciences Journal, 2009, 13(4):371-385. doi: 10.1007/s12303-009-0039-8

    CrossRef Google Scholar

    [40] Kim J H, Torres M E, Hong W L, et al. Pore fluid chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47:99-112. doi: 10.1016/j.marpetgeo.2012.12.011

    CrossRef Google Scholar

    [41] Waage M, Portnov A, Serov P, et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(2):630-650. doi: 10.1029/2018GC007930

    CrossRef Google Scholar

    [42] Waage M, Serov P, Andreassen K, et al. Geological controls of giant crater development on the Arctic seafloor[J]. Scientific Reports, 2020, 10(1):8450. doi: 10.1038/s41598-020-65018-9

    CrossRef Google Scholar

    [43] Nixon F C, Chand S, Thorsnes T, et al. A modified gas hydrate-geomorphological model for a new discovery of enigmatic craters and seabed mounds in the Central Barents Sea, Norway[J]. Geo-Marine Letters, 2019, 39(3):191-203. doi: 10.1007/s00367-019-00567-1

    CrossRef Google Scholar

    [44] Andreassen K, Hubbard A, Winsborrow M, et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science, 2017, 356(6341):948-953. doi: 10.1126/science.aal4500

    CrossRef Google Scholar

    [45] Mazzini A, Etiope G. Mud volcanism: an updated review[J]. Earth-Science Reviews, 2017, 168:81-112. doi: 10.1016/j.earscirev.2017.03.001

    CrossRef Google Scholar

    [46] Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Håkon Mosby mud volcano: a review[J]. Chemical Geology, 2004, 205(3-4):347-366. doi: 10.1016/j.chemgeo.2003.12.030

    CrossRef Google Scholar

    [47] Ren J F, Cheng C, Xiong P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 215:110630. doi: 10.1016/j.petrol.2022.110630

    CrossRef Google Scholar

    [48] Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters, 2003, 30(2):1037.

    Google Scholar

    [49] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [50] Jahren A H, Conrad C P, Arens N C, et al. A plate tectonic mechanism for methane hydrate release along subduction zones[J]. Earth and Planetary Science Letters, 2005, 236(3-4):691-704. doi: 10.1016/j.jpgl.2005.06.009

    CrossRef Google Scholar

    [51] Sundquist E T, Visser K. The geologic history of the carbon cycle[J]. Treatise on Geochemistry, 2003, 8:425-472.

    Google Scholar

    [52] Hsu S K, Wang S Y, Liao Y C, et al. Tide-modulated gas emissions and tremors off SW Taiwan[J]. Earth and Planetary Science Letters, 2013, 369-370:98-107. doi: 10.1016/j.jpgl.2013.03.013

    CrossRef Google Scholar

    [53] Ruppel C D, Waite W F. Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8):e2018JB016459. doi: 10.1029/2018JB016459

    CrossRef Google Scholar

    [54] Sibuet M, Roy K O L. Cold seep communities on continental margins: structure and quantitative distribution relative to geological and fluid venting patterns[M]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems. Berlin, Heidelberg: Springer, 2002: 235-251.

    Google Scholar

    [55] Akam S A, Swanner E D, Yao H M, et al. Methane-derived authigenic carbonates–A case for a globally relevant marine carbonate factory[J]. Earth-Science Reviews, 2023, 243:104487. doi: 10.1016/j.earscirev.2023.104487

    CrossRef Google Scholar

    [56] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [57] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374

    CrossRef Google Scholar

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7):2905-2914.] doi: 10.6038/cjg2018L0374

    CrossRef Google Scholar

    [58] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    Google Scholar

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 2020, 49(1):108-118.]

    Google Scholar

    [59] Zhang X, Luan Z D, Du Z F, et al. Gas hydrates in shallow sediments as capacitors for cold seep ecosystems: insights from in-situ experiments[J]. Earth and Planetary Science Letters, 2023, 624:118469. doi: 10.1016/j.jpgl.2023.118469

    CrossRef Google Scholar

    [60] Ferré B, Jansson P G, Moser M, et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions[J]. Nature Geoscience, 2020, 13(2):144-148. doi: 10.1038/s41561-019-0515-3

    CrossRef Google Scholar

    [61] Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin[J]. Biogeochemistry, 2013, 115(1):129-148.

    Google Scholar

    [62] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7):2449-2498. doi: 10.3390/en5072449

    CrossRef Google Scholar

    [63] Stolper D A, Lawson M, Davis C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191):1500-1503. doi: 10.1126/science.1254509

    CrossRef Google Scholar

    [64] Stolper D A, Sessions A L, Ferreira A A, et al. Combined 13C–D and D–D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126:169-191. doi: 10.1016/j.gca.2013.10.045

    CrossRef Google Scholar

    [65] 刘玉山, 祝有海, 吴必豪. 更具开发前景的浅成天然气水合物[J]. 海洋地质前沿, 2016, 32(4):24-30

    Google Scholar

    LIU Yushan, ZHU Youhai, WU Bihao. Shallow gas hydrates, a type of hydrate deposits more suitable for production[J]. Marine Geology Frontiers, 2016, 32(4):24-30.]

    Google Scholar

    [66] Serié C, Huuse M, Schødt N H. Gas hydrate pingoes: deep seafloor evidence of focused fluid flow on continental margins[J]. Geology, 2012, 40(3):207-210. doi: 10.1130/G32690.1

    CrossRef Google Scholar

    [67] Liu L P, Ryu B, Sun Z L, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65:82-107. doi: 10.1016/j.jngse.2019.02.007

    CrossRef Google Scholar

    [68] 张炜, 邵明娟, 王海华, 等. 日本浅表层水合物勘查试采进展[J]. 中国地质调查, 2024, 11(3):117-126

    Google Scholar

    ZHANG Wei, SHAO Mingjuan, WANG Haihua, et al. Progress of shallow hydrate exploration and production test in Japan[J]. Geological Survey of China, 2024, 11(3):117-126.]

    Google Scholar

    [69] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8

    Google Scholar

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4):1-8.]

    Google Scholar

    [70] 孙治雷, 张喜林, 郭金家, 等. 深海极端环境探测技术与应用[M]. 北京: 科学出版社, 2023: 1-278

    Google Scholar

    SUN Zhilei, ZHANG Xilin, GUO Jinjia, et al. Deep-Sea Extreme Environment Exploration Technology and Application[M]. Beijing: Science Press, 2023: 1-278.]

    Google Scholar

    [71] 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1):1-13

    Google Scholar

    WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1):1-13.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(83) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint