Citation: | WANG Chaoping, LIU Xin, ZHAO Dapeng, GUO Lingli, GOU Tao. Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901 |
The subduction of the Pacific Plate beneath the North American Plate causes frequent occurrence of interplate megathrust earthquakes in the Alaska forearc. However, the distribution of megathrust earthquakes is not uniform and their causal mechanism is still not clear. To clarify this issue, we collected teleseismic waveform data recorded at 268 seismic stations deployed in Alaska during 2018-2019, and measure the teleseismic fundamental mode Rayleigh-wave amplitude and phase data at periods of 25~100 s. We applied a seismic tomographic method to determine a new three-dimensional shear-wave velocity model of the upper mantle beneath Alaska. Our tomographic results revealed lateral structural variations along the trench beneath the Alaska forearc. Beneath the source zones of megathrust earthquakes, the subducting slab exhibits an obvious high-velocity anomaly and is supported by a subslab with obvious low-velocity anomalies. These features suggest possible convergence of the asthenosphere beneath the source zones of the megathrust earthquakes, which may strengthen the coupling between the subducting slab and the overlying plate by increasing the slab buoyancy, and thus affect the generation of the megathrust earthquakes.
[1] | Kanamori H. The Alaska Earthquake of 1964: radiation of long-period surface waves and source mechanism[J]. Journal of Geophysical Research, 1970, 75(26):5029-5040. doi: 10.1029/JB075i026p05029 |
[2] | Ye L L, Bai Y F, Si D J, et al. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2021JB023676. doi: 10.1029/2021JB023676 |
[3] | Freymueller J T, Suleimani E N, Nicolsky D J. Constraints on the slip distribution of the 1938 Mw 8.3 Alaska Peninsula earthquake from tsunami modeling[J]. Geophysical Research Letters, 2021, 48(9):e2021GL092812. doi: 10.1029/2021GL092812 |
[4] | Pelayo A M, Wiens D A. Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B11):15321-15337. doi: 10.1029/92JB01305 |
[5] | Johnson J M, Satake K, Holdahl S R, et al. The 1964 Prince William Sound earthquake: joint inversion of tsunami and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B1):523-532. doi: 10.1029/95JB02806 |
[6] | He B, Wei X Z, Wei M, et al. A shallow slow slip event in 2018 in the Semidi segment of the Alaska subduction zone detected by machine learning[J]. Earth and Planetary Science Letters, 2023, 612:118154. doi: 10.1016/j.jpgl.2023.118154 |
[7] | Ohta Y, Freymueller J, Hreinsdóttir S, et al. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth and Planetary Science Letters, 2006, 247(1-2):108-116. doi: 10.1016/j.jpgl.2006.05.013 |
[8] | Wei M, McGuire J J, Richardson E. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophysical Research Letters, 2012, 39(15):L15309. doi: 10.1029/2012GL052351 |
[9] | Fu Y N, Freymueller J T. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth and Planetary Science Letters, 2013, 375:303-311. doi: 10.1016/j.jpgl.2013.05.049 |
[10] | Fu Y N, Liu Z, Freymueller J T. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2450-2461. doi: 10.1002/2015GC005904 |
[11] | Okada Y, Nishimura T. Systematic detection of short-term slow slip events in south-central Alaska[J]. Geophysical Research Letters, 2023, 50(17):e2023GL104901. doi: 10.1029/2023GL104901 |
[12] | Brown J R, Prejean S G, Beroza G C, et al. Deep low-frequency earthquakes in tectonic tremor along the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3):1079-1090. doi: 10.1029/2012JB009459 |
[13] | Wech A G. Extending Alaska’s plate boundary: tectonic tremor generated by Yakutat subduction[J]. Geology, 2016, 44(7):587-590. doi: 10.1130/G37817.1 |
[14] | Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. doi: 10.1038/34097 |
[15] | Lay T, Kanamori H, Ammon C J, et al. Depth-varying rupture properties of subduction zone megathrust faults[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04311. doi: 10.1029/2011JB009133 |
[16] | Obara K, Kato A. Connecting slow earthquakes to huge earthquakes[J]. Science, 2016, 353(6296):253-257. doi: 10.1126/science.aaf1512 |
[17] | Tape C, Lomax A. Aftershock regions of Aleutian-Alaska megathrust earthquakes, 1938-2021[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2022JB024336. doi: 10.1029/2022JB024336 |
[18] | Zweck C, Freymueller J T, Cohen S C. Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ECV 1-1-ECV 1-11, doi: 10.1029/2001JB000409. |
[19] | Li S S, Freymueller J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophysical Research Letters, 2018, 45(8):3453-3460. doi: 10.1002/2017GL076761 |
[20] | Drooff C, Freymueller J T. New constraints on slip deficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements[J]. Geophysical Research Letters, 2021, 48(4):e2020GL091787. doi: 10.1029/2020GL091787 |
[21] | Elliott J L, Grapenthin R, Parameswaran R M, et al. Cascading rupture of a megathrust[J]. Science Advances, 2022, 8:eabm4131. doi: 10.1126/sciadv.abm4131 |
[22] | Zhao B, Bürgmann R, Wang D Z, et al. Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone[J]. Nature Communications, 2022, 13(1):3098. doi: 10.1038/s41467-022-30883-7 |
[23] | Brooks B A, Goldberg D, DeSanto J, et al. Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy[J]. Science Advances, 2023, 9(17):eadf9299. doi: 10.1126/sciadv.adf9299 |
[24] | Liu C L, Bai Y F, Lay T, et al. Megathrust complexity and the up-dip extent of slip during the 2021 Chignik, Alaska Peninsula earthquake[J]. Tectonophysics, 2023, 854:229808. doi: 10.1016/j.tecto.2023.229808 |
[25] | Ichinose G, Somerville P, Thio H K, et al. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7):B07306. doi: 10.1029/2006JB004728 |
[26] | Barcheck G, Abers G A, Adams A N, et al. The Alaska amphibious community seismic experiment[J]. Seismological Research Letters, 2020, 91(6):3054-3063. doi: 10.1785/0220200189 |
[27] | Liu X, Zhao D P. Seismic evidence for a plume-modified oceanic lithosphere–asthenosphere system beneath Cape Verde[J]. Geophysical Journal International, 2021, 225(2):872-886. doi: 10.1093/gji/ggab012 |
[28] | Forsyth D W, Li A B. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[M]//Levander A, Nolet G. Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, 2005: 81-97. |
[29] | Yang Y J, Forsyth D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 2006, 166(3):1148-1160. doi: 10.1111/j.1365-246X.2006.02972.x |
[30] | Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13):19909-19928. doi: 10.1029/92JB00603 |
[31] | Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982, 8(1):43-71. doi: 10.1145/355984.355989 |
[32] | Kreemer C, Blewitt G, Klein E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10):3849-3889. doi: 10.1002/2014GC005407 |
[33] | Saito M. DISPER80: a subroutine package for the calculation of seismic normal mode solutions [M]//Doornbos D. Seismological Algorithms: Computational Methods and Computer Programs. New York: Academic Press, 1988: 293-319. |
[34] | Birch F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7):2199-2224. doi: 10.1029/JZ066i007p02199 |
[35] | Wang X, Liu X, Zhao D P, et al. Oceanic plate subduction and continental extrusion in Sumatra: insight from S-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 580:117388. doi: 10.1016/j.jpgl.2022.117388 |
[36] | Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1):108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x |
[37] | Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. doi: 10.1126/science.aat4723 |
[38] | Gou T, Zhao D P, Huang Z C, et al. Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2):1700-1724. doi: 10.1029/2018JB016639 |
[39] | Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0—A 1-global model of Earth's crust[J]. Geophysical Research Abstracts, 2013, 15:EGU2013-2658. |
[40] | Engdahl E R, Di Giacomo D, Sakarya B, et al. ISC-EHB 1964-2016, an improved data set for studies of earth structure and global seismicity[J]. Earth and Space Science, 2020, 7(1):e2019EA000897. doi: 10.1029/2019EA000897 |
[41] | Zhao D P, Christensen D, Pulpan H. Tomographic imaging of the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4):6487-6504. doi: 10.1029/95JB00046 |
[42] | Eberhart-Phillips D, Christensen D H, Brocher T M, et al. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11):B11303. doi: 10.1029/2005JB004240 |
[43] | You T, Zhao D P. Seismic anisotropy and heterogeneity in the Alaska subduction zone[J]. Geophysical Journal International, 2012, 190(1):629-649. doi: 10.1111/j.1365-246X.2012.05512.x |
[44] | Gou T, Zhao D P, Huang Z C, et al. Structural heterogeneity in source zones of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3):e2019GC008812. doi: 10.1029/2019GC008812 |
[45] | Gou T, Xia S H, Huang Z C, et al. Structural heterogeneity of the Alaska-Aleutian Forearc: implications for interplate coupling and seismogenic behaviors[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024621. doi: 10.1029/2022JB024621 |
[46] | Feng L, Liu C M, Ritzwoller M H. Azimuthal anisotropy of the crust and uppermost mantle beneath Alaska[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12):e2020JB020076. doi: 10.1029/2020JB020076 |
[47] | Li Z S, Wiens D A, Shen W S, et al. Along-strike variations of Alaska subduction zone structure and hydration determined from amphibious seismic data[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3):e2023JB027800. doi: 10.1029/2023JB027800 |
[48] | Wang F, Wei S S, Drooff C, et al. Fluids control along-strike variations in the Alaska megathrust slip[J]. Earth and Planetary Science Letters, 2024, 633:118655. doi: 10.1016/j.jpgl.2024.118655 |
[49] | Liu C M, Zhang S N, Sheehan A F, et al. Surface wave isotropic and azimuthally anisotropic dispersion across Alaska and the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024885. doi: 10.1029/2022JB024885 |
[50] | Zhao D P, Huang Z C, Umino N, et al. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0)[J]. Geophysical Research Letters, 2011, 38(17):L17308. doi: 10.1029/2011gl048408 |
[51] | Moreno M, Haberland C, Oncken O, et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake[J]. Nature Geoscience, 2014, 7(4):292-296. doi: 10.1038/ngeo2102 |
[52] | Bassett D, Sandwell D T, Fialko Y, et al. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake[J]. Nature, 2016, 531(7592):92-96. doi: 10.1038/nature16945 |
[53] | Steckler M S, Mondal D R, Akhter S H, et al. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges[J]. Nature Geoscience, 2016, 9(8):615-618. doi: 10.1038/ngeo2760 |
[54] | Liu X, Zhao D P. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Science Advances, 2018, 4(6):eaat4396. doi: 10.1126/sciadv.aat4396 |
[55] | Hua Y Y, Zhao D P, Toyokuni G, et al. Tomography of the source zone of the great 2011 Tohoku earthquake[J]. Nature Communications, 2020, 11(1):1163. doi: 10.1038/s41467-020-14745-8 |
[56] | Cordell D, Naif S, Evans R, et al. Forearc seismogenesis in a weakly coupled subduction zone influenced by slab mantle fluids[J]. Nature Geoscience, 2023, 16(9):822-827. doi: 10.1038/s41561-023-01260-w |
[57] | Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252. doi: 10.1016/0031-9201(80)90117-X |
[58] | Nishikawa T, Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7(12):904-908. doi: 10.1038/ngeo2279 |
[59] | Hawley W B, Allen R M, Richards M A. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate[J]. Science, 2016, 353(6306):1406-1408. doi: 10.1126/science.aad8104 |
[60] | Zhao D P, Hua Y Y. Anisotropic tomography of the Cascadia subduction zone[J]. Physics of the Earth and Planetary Interiors, 2021, 318:106767. doi: 10.1016/j.pepi.2021.106767 |
[61] | Bodmer M, Toomey D R, Hooft E E E, et al. Buoyant asthenosphere beneath Cascadia influences megathrust segmentation[J]. Geophysical Research Letters, 2018, 45(14):6954-6962. doi: 10.1029/2018GL078700 |
[62] | Bodmer M, Toomey D R, Roering J J, et al. Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc[J]. Earth and Planetary Science Letters, 2020, 531:115965. doi: 10.1016/j.jpgl.2019.115965 |
[63] | Fan J K, Zhao D P. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14(5):349-353. doi: 10.1038/s41561-021-00728-x |
[64] | Chaytor J D, Keller R A, Duncan R A, et al. Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09016. doi: 10.1029/2007GC001712 |
Distributions of seismic stations and teleseismic events used in this study
An example of measuring teleseismic Rayleigh-wave data
Dispersion curve of average phase-velocity of Rayleigh-wave in Alaska
Parameters of the Rayleigh-wave phase-velocity tomography
Plane views of Rayleigh-wave phase-velocity tomography for six periods in Alaska
The parameters of the shear-wave velocity tomography
Plane views of shear-wave velocity tomography at six depths
Profiles of Alaska shear-wave velocity tomography
The test results on the resolution of the tectonic reconstruction in Alaska as shown in the output shear wave velocity model
Deep structure of the subducting Pacific lithosphere-asthenosphere system beneath Alaska forearc
Results of a checkerboard resolution test
Resolution test on the reconstruction of tectonic features of the Pacific lithosphere-asthenosphere subduction system in the Alaska forearc