2025 Vol. 45, No. 3
Article Contents

WANG Chaoping, LIU Xin, ZHAO Dapeng, GUO Lingli, GOU Tao. Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901
Citation: WANG Chaoping, LIU Xin, ZHAO Dapeng, GUO Lingli, GOU Tao. Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901

Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes

More Information
  • The subduction of the Pacific Plate beneath the North American Plate causes frequent occurrence of interplate megathrust earthquakes in the Alaska forearc. However, the distribution of megathrust earthquakes is not uniform and their causal mechanism is still not clear. To clarify this issue, we collected teleseismic waveform data recorded at 268 seismic stations deployed in Alaska during 2018-2019, and measure the teleseismic fundamental mode Rayleigh-wave amplitude and phase data at periods of 25~100 s. We applied a seismic tomographic method to determine a new three-dimensional shear-wave velocity model of the upper mantle beneath Alaska. Our tomographic results revealed lateral structural variations along the trench beneath the Alaska forearc. Beneath the source zones of megathrust earthquakes, the subducting slab exhibits an obvious high-velocity anomaly and is supported by a subslab with obvious low-velocity anomalies. These features suggest possible convergence of the asthenosphere beneath the source zones of the megathrust earthquakes, which may strengthen the coupling between the subducting slab and the overlying plate by increasing the slab buoyancy, and thus affect the generation of the megathrust earthquakes.

  • 加载中
  • [1] Kanamori H. The Alaska Earthquake of 1964: radiation of long-period surface waves and source mechanism[J]. Journal of Geophysical Research, 1970, 75(26):5029-5040. doi: 10.1029/JB075i026p05029

    CrossRef Google Scholar

    [2] Ye L L, Bai Y F, Si D J, et al. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2021JB023676. doi: 10.1029/2021JB023676

    CrossRef Google Scholar

    [3] Freymueller J T, Suleimani E N, Nicolsky D J. Constraints on the slip distribution of the 1938 Mw 8.3 Alaska Peninsula earthquake from tsunami modeling[J]. Geophysical Research Letters, 2021, 48(9):e2021GL092812. doi: 10.1029/2021GL092812

    CrossRef Google Scholar

    [4] Pelayo A M, Wiens D A. Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B11):15321-15337. doi: 10.1029/92JB01305

    CrossRef Google Scholar

    [5] Johnson J M, Satake K, Holdahl S R, et al. The 1964 Prince William Sound earthquake: joint inversion of tsunami and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B1):523-532. doi: 10.1029/95JB02806

    CrossRef Google Scholar

    [6] He B, Wei X Z, Wei M, et al. A shallow slow slip event in 2018 in the Semidi segment of the Alaska subduction zone detected by machine learning[J]. Earth and Planetary Science Letters, 2023, 612:118154. doi: 10.1016/j.jpgl.2023.118154

    CrossRef Google Scholar

    [7] Ohta Y, Freymueller J, Hreinsdóttir S, et al. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth and Planetary Science Letters, 2006, 247(1-2):108-116. doi: 10.1016/j.jpgl.2006.05.013

    CrossRef Google Scholar

    [8] Wei M, McGuire J J, Richardson E. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophysical Research Letters, 2012, 39(15):L15309. doi: 10.1029/2012GL052351

    CrossRef Google Scholar

    [9] Fu Y N, Freymueller J T. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth and Planetary Science Letters, 2013, 375:303-311. doi: 10.1016/j.jpgl.2013.05.049

    CrossRef Google Scholar

    [10] Fu Y N, Liu Z, Freymueller J T. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2450-2461. doi: 10.1002/2015GC005904

    CrossRef Google Scholar

    [11] Okada Y, Nishimura T. Systematic detection of short-term slow slip events in south-central Alaska[J]. Geophysical Research Letters, 2023, 50(17):e2023GL104901. doi: 10.1029/2023GL104901

    CrossRef Google Scholar

    [12] Brown J R, Prejean S G, Beroza G C, et al. Deep low-frequency earthquakes in tectonic tremor along the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3):1079-1090. doi: 10.1029/2012JB009459

    CrossRef Google Scholar

    [13] Wech A G. Extending Alaska’s plate boundary: tectonic tremor generated by Yakutat subduction[J]. Geology, 2016, 44(7):587-590. doi: 10.1130/G37817.1

    CrossRef Google Scholar

    [14] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. doi: 10.1038/34097

    CrossRef Google Scholar

    [15] Lay T, Kanamori H, Ammon C J, et al. Depth-varying rupture properties of subduction zone megathrust faults[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04311. doi: 10.1029/2011JB009133

    CrossRef Google Scholar

    [16] Obara K, Kato A. Connecting slow earthquakes to huge earthquakes[J]. Science, 2016, 353(6296):253-257. doi: 10.1126/science.aaf1512

    CrossRef Google Scholar

    [17] Tape C, Lomax A. Aftershock regions of Aleutian-Alaska megathrust earthquakes, 1938-2021[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2022JB024336. doi: 10.1029/2022JB024336

    CrossRef Google Scholar

    [18] Zweck C, Freymueller J T, Cohen S C. Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ECV 1-1-ECV 1-11, doi: 10.1029/2001JB000409.

    Google Scholar

    [19] Li S S, Freymueller J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophysical Research Letters, 2018, 45(8):3453-3460. doi: 10.1002/2017GL076761

    CrossRef Google Scholar

    [20] Drooff C, Freymueller J T. New constraints on slip deficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements[J]. Geophysical Research Letters, 2021, 48(4):e2020GL091787. doi: 10.1029/2020GL091787

    CrossRef Google Scholar

    [21] Elliott J L, Grapenthin R, Parameswaran R M, et al. Cascading rupture of a megathrust[J]. Science Advances, 2022, 8:eabm4131. doi: 10.1126/sciadv.abm4131

    CrossRef Google Scholar

    [22] Zhao B, Bürgmann R, Wang D Z, et al. Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone[J]. Nature Communications, 2022, 13(1):3098. doi: 10.1038/s41467-022-30883-7

    CrossRef Google Scholar

    [23] Brooks B A, Goldberg D, DeSanto J, et al. Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy[J]. Science Advances, 2023, 9(17):eadf9299. doi: 10.1126/sciadv.adf9299

    CrossRef Google Scholar

    [24] Liu C L, Bai Y F, Lay T, et al. Megathrust complexity and the up-dip extent of slip during the 2021 Chignik, Alaska Peninsula earthquake[J]. Tectonophysics, 2023, 854:229808. doi: 10.1016/j.tecto.2023.229808

    CrossRef Google Scholar

    [25] Ichinose G, Somerville P, Thio H K, et al. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7):B07306. doi: 10.1029/2006JB004728

    CrossRef Google Scholar

    [26] Barcheck G, Abers G A, Adams A N, et al. The Alaska amphibious community seismic experiment[J]. Seismological Research Letters, 2020, 91(6):3054-3063. doi: 10.1785/0220200189

    CrossRef Google Scholar

    [27] Liu X, Zhao D P. Seismic evidence for a plume-modified oceanic lithosphere–asthenosphere system beneath Cape Verde[J]. Geophysical Journal International, 2021, 225(2):872-886. doi: 10.1093/gji/ggab012

    CrossRef Google Scholar

    [28] Forsyth D W, Li A B. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[M]//Levander A, Nolet G. Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, 2005: 81-97.

    Google Scholar

    [29] Yang Y J, Forsyth D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 2006, 166(3):1148-1160. doi: 10.1111/j.1365-246X.2006.02972.x

    CrossRef Google Scholar

    [30] Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13):19909-19928. doi: 10.1029/92JB00603

    CrossRef Google Scholar

    [31] Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982, 8(1):43-71. doi: 10.1145/355984.355989

    CrossRef Google Scholar

    [32] Kreemer C, Blewitt G, Klein E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10):3849-3889. doi: 10.1002/2014GC005407

    CrossRef Google Scholar

    [33] Saito M. DISPER80: a subroutine package for the calculation of seismic normal mode solutions [M]//Doornbos D. Seismological Algorithms: Computational Methods and Computer Programs. New York: Academic Press, 1988: 293-319.

    Google Scholar

    [34] Birch F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7):2199-2224. doi: 10.1029/JZ066i007p02199

    CrossRef Google Scholar

    [35] Wang X, Liu X, Zhao D P, et al. Oceanic plate subduction and continental extrusion in Sumatra: insight from S-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 580:117388. doi: 10.1016/j.jpgl.2022.117388

    CrossRef Google Scholar

    [36] Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1):108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x

    CrossRef Google Scholar

    [37] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. doi: 10.1126/science.aat4723

    CrossRef Google Scholar

    [38] Gou T, Zhao D P, Huang Z C, et al. Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2):1700-1724. doi: 10.1029/2018JB016639

    CrossRef Google Scholar

    [39] Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0—A 1-global model of Earth's crust[J]. Geophysical Research Abstracts, 2013, 15:EGU2013-2658.

    Google Scholar

    [40] Engdahl E R, Di Giacomo D, Sakarya B, et al. ISC-EHB 1964-2016, an improved data set for studies of earth structure and global seismicity[J]. Earth and Space Science, 2020, 7(1):e2019EA000897. doi: 10.1029/2019EA000897

    CrossRef Google Scholar

    [41] Zhao D P, Christensen D, Pulpan H. Tomographic imaging of the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4):6487-6504. doi: 10.1029/95JB00046

    CrossRef Google Scholar

    [42] Eberhart-Phillips D, Christensen D H, Brocher T M, et al. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11):B11303. doi: 10.1029/2005JB004240

    CrossRef Google Scholar

    [43] You T, Zhao D P. Seismic anisotropy and heterogeneity in the Alaska subduction zone[J]. Geophysical Journal International, 2012, 190(1):629-649. doi: 10.1111/j.1365-246X.2012.05512.x

    CrossRef Google Scholar

    [44] Gou T, Zhao D P, Huang Z C, et al. Structural heterogeneity in source zones of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3):e2019GC008812. doi: 10.1029/2019GC008812

    CrossRef Google Scholar

    [45] Gou T, Xia S H, Huang Z C, et al. Structural heterogeneity of the Alaska-Aleutian Forearc: implications for interplate coupling and seismogenic behaviors[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024621. doi: 10.1029/2022JB024621

    CrossRef Google Scholar

    [46] Feng L, Liu C M, Ritzwoller M H. Azimuthal anisotropy of the crust and uppermost mantle beneath Alaska[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12):e2020JB020076. doi: 10.1029/2020JB020076

    CrossRef Google Scholar

    [47] Li Z S, Wiens D A, Shen W S, et al. Along-strike variations of Alaska subduction zone structure and hydration determined from amphibious seismic data[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3):e2023JB027800. doi: 10.1029/2023JB027800

    CrossRef Google Scholar

    [48] Wang F, Wei S S, Drooff C, et al. Fluids control along-strike variations in the Alaska megathrust slip[J]. Earth and Planetary Science Letters, 2024, 633:118655. doi: 10.1016/j.jpgl.2024.118655

    CrossRef Google Scholar

    [49] Liu C M, Zhang S N, Sheehan A F, et al. Surface wave isotropic and azimuthally anisotropic dispersion across Alaska and the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024885. doi: 10.1029/2022JB024885

    CrossRef Google Scholar

    [50] Zhao D P, Huang Z C, Umino N, et al. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0)[J]. Geophysical Research Letters, 2011, 38(17):L17308. doi: 10.1029/2011gl048408

    CrossRef Google Scholar

    [51] Moreno M, Haberland C, Oncken O, et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake[J]. Nature Geoscience, 2014, 7(4):292-296. doi: 10.1038/ngeo2102

    CrossRef Google Scholar

    [52] Bassett D, Sandwell D T, Fialko Y, et al. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake[J]. Nature, 2016, 531(7592):92-96. doi: 10.1038/nature16945

    CrossRef Google Scholar

    [53] Steckler M S, Mondal D R, Akhter S H, et al. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges[J]. Nature Geoscience, 2016, 9(8):615-618. doi: 10.1038/ngeo2760

    CrossRef Google Scholar

    [54] Liu X, Zhao D P. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Science Advances, 2018, 4(6):eaat4396. doi: 10.1126/sciadv.aat4396

    CrossRef Google Scholar

    [55] Hua Y Y, Zhao D P, Toyokuni G, et al. Tomography of the source zone of the great 2011 Tohoku earthquake[J]. Nature Communications, 2020, 11(1):1163. doi: 10.1038/s41467-020-14745-8

    CrossRef Google Scholar

    [56] Cordell D, Naif S, Evans R, et al. Forearc seismogenesis in a weakly coupled subduction zone influenced by slab mantle fluids[J]. Nature Geoscience, 2023, 16(9):822-827. doi: 10.1038/s41561-023-01260-w

    CrossRef Google Scholar

    [57] Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252. doi: 10.1016/0031-9201(80)90117-X

    CrossRef Google Scholar

    [58] Nishikawa T, Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7(12):904-908. doi: 10.1038/ngeo2279

    CrossRef Google Scholar

    [59] Hawley W B, Allen R M, Richards M A. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate[J]. Science, 2016, 353(6306):1406-1408. doi: 10.1126/science.aad8104

    CrossRef Google Scholar

    [60] Zhao D P, Hua Y Y. Anisotropic tomography of the Cascadia subduction zone[J]. Physics of the Earth and Planetary Interiors, 2021, 318:106767. doi: 10.1016/j.pepi.2021.106767

    CrossRef Google Scholar

    [61] Bodmer M, Toomey D R, Hooft E E E, et al. Buoyant asthenosphere beneath Cascadia influences megathrust segmentation[J]. Geophysical Research Letters, 2018, 45(14):6954-6962. doi: 10.1029/2018GL078700

    CrossRef Google Scholar

    [62] Bodmer M, Toomey D R, Roering J J, et al. Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc[J]. Earth and Planetary Science Letters, 2020, 531:115965. doi: 10.1016/j.jpgl.2019.115965

    CrossRef Google Scholar

    [63] Fan J K, Zhao D P. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14(5):349-353. doi: 10.1038/s41561-021-00728-x

    CrossRef Google Scholar

    [64] Chaytor J D, Keller R A, Duncan R A, et al. Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09016. doi: 10.1029/2007GC001712

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(66) PDF downloads(10) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint