Citation: | LIAO Jihua, ZHANG Xiaoqing, SU Shengmin, WANG Ke, GENG Mingyang, LI Linzhi. Tectonic migration and its impact on the development of source rocks in the Paleogene Lishui Sag, East China Sea Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 146-157. doi: 10.16562/j.cnki.0256-1492.2024090301 |
Tectonic migration is an important geological phenomenon in the episodic evolution process of faulted basins, which significantly influences the development and distribution of high-quality source rocks. Based on the most recent compilation of 3D seismic, drilling, and organic geochemical information, combined with tectonic-stratigraphic framework, the activity of major faults, as well as the spatial-temporal distribution of sedimentary-subsidence centers, we revealed for the first time the migration patterns of the Paleogene structures in the Lishui Sag of the East China Sea Basin. Furthermore, we investigated the genetic mechanisms governing tectonic migration and its implications on source rock formations and the potential for hydrocarbon generation. Results indicate that the depression and sedimentary center of the Lishui Sag underwent a westward migration during the Paleocene. The fault depression-deposition center of Lishui Sag migrated from east to west in the Paleocene. The regional sedimentation center was located in the Lishui East Sub-Sag in the early Paleocene, migrated to the Lishui West Sub-Sag in the middle Paleocene, and developed inheritedly in the late Paleocene. The phenomenon of tectonic migration occurs as the result of the westward movement of major active faults and sedimentary-subsidence centers, which is driven by the transformation of the East China Sea Basin from a depression along the continental margin to wide-developed rift. Affected by tectonic migration, the lacustrine source rocks of the Yueguifeng Formation exhibit variations in scale, quality, and hydrocarbon expulsion intensity between the East and West Subsags. The East Subsag features larger scale source rocks of superior quality and higher hydrocarbon expulsion intensity, whereas the West Subsag contains smaller scale source rocks with increased maturity. Additionally, the West Subsag is characterized by the presence of terrestrial marine source rocks of the Lingfeng Formation, which are larger in scale and exhibit higher maturity levels. Therefore, the primary emphasis of the exploration in East Subsag should be directed towards the oil and gas system originating from the hydrocarbon source kitchens of the Yueguifeng Formation, with a predominant focus on oil exploration. Conversely, exploration activities in the West Subsag should encompass a comprehensive evaluation of the two source rock formations, namely the Yueguifeng Formation and the Lingfeng Formation, with a particular emphasis on both oil and gas reservoirs, with gas as a key focal point.
[1] | 任纪舜, 姜春发, 张正坤, 等. 中国大地构造及其演化[M]. 北京: 科学出版社, 1980: 124 REN Jishun, JIANG Chunfa, ZHANG Zhengkun, et al. Geotectonics and evolution in China [M]. Beijing: Science Press, 1980: 124.] |
[2] | 姜春发, 朱松年. 构造迁移论概述[J]. 中国地质科学院院报, 1992, 13(1):1-14 JIANG Chunfa, ZHU Songnian. Introduction to tectonic migration theory[J]. Bulletin of the Chinese Academy of Geological Sciences, 1992, 13(1):1-14.] |
[3] | 王同和. 中国东部含油气盆地的构造迁移[J]. 中国科学: B辑, 1988(12):1314-1322 WANG Tonghe. Tectonic migration of petroliferous basins in eastern China[J]. Scientia Sinica: Series B, 1988(12):1314-1322.] |
[4] | Wang P C, Li S Z, Suo Y H, et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea[J]. Geoscience Frontiers, 2020, 11(4):1231-1251. doi: 10.1016/j.gsf.2019.10.009 |
[5] | 夏斌, 吕宝凤, 吴国干, 等. 南海北部新生代盆地构造迁移及其对烃源岩的制约作用[J]. 天然气地球科学, 2007, 8(5):629-634 doi: 10.3969/j.issn.1672-1926.2007.05.001 XIA Bin, LV Baofeng, WU Guogan, et al. The Cenozoic tectonic transport and its control on the source rock in the Northern Sourth China Sea[J]. Natural Gas Geoscience, 2007, 8(5):629-634.] doi: 10.3969/j.issn.1672-1926.2007.05.001 |
[6] | 胡望水, 吴婵, 梁建设, 等. 北部湾盆地构造迁移特征及对油气成藏的影响[J]. 石油与天然气地质, 2011, 32(6):920-927 doi: 10.11743/ogg20110615 HU Wangshui, WU Chan, LIANG Jianshe, et al. Tectonic transport characteristics and their influences on hydrocarbon accumulation in Beibuwan Basin[J]. Oil & Gas Geology, 2011, 32(6):920-927.] doi: 10.11743/ogg20110615 |
[7] | 蔡少武, 吕丁友, 贺电波, 等. 渤海湾盆地秦南凹陷构造迁移特征及其对油气聚集的影响[J]. 石油学报, 2019, 40(S2):67-78 CAI Shaowu, LV Dingyou, HE Dianbo, et al. Characteristics of tectonic migration in Qinnan sag of the Bohai Bay Basin and its impact on hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2019, 40(S2):67-78.] |
[8] | 施和生, 杜家元, 梅廉夫, 等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发, 2020, 47(3):447-461 doi: 10.11698/PED.2020.03.02 SHI Hesheng, DU Jiayuan, MEI Lianfu, et al. Huizhou Movement and its significance in Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development, 2020, 47(3):447-461.] doi: 10.11698/PED.2020.03.02 |
[9] | Chanvry E, Deschamps R, Joseph P, et al. The influence of intrabasinal tectonics in the stratigraphic evolution of piggyback basin fills: towards a model from the Tremp-Graus-Ainsa Basin (South-Pyrennean Zone, Spain)[J]. Sedimentary Geology, 2018, 377:34-62. doi: 10.1016/j.sedgeo.2018.09.007 |
[10] | 林畅松, 刘景彦, 张英志, 等. 构造活动盆地的层序地层与构造地层分析—以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘, 2005, 12(4):365-374 doi: 10.3321/j.issn:1005-2321.2005.04.005 LIN Changsong, LIU Jingyan, ZHANG Yingzhi, et al. Sequence stratigraphy and tectono-stratigraphic analysis of tectonically active basins: A case study on the Cenozoic-Mesozoic lacustrine basins in China[J]. Earth Science Frontiers, 2005, 12(4):365-374.] doi: 10.3321/j.issn:1005-2321.2005.04.005 |
[11] | 吴克强, 吴景富, 刘丽芳, 等. 构造迁移及其对油气成藏的影响—以渤海渤东、庙西凹陷为例[J]. 中国海上油气, 2014, 26(2):6-11 WU Keqiang, WU Jingfu, LIU Lifang, et al. Tectonic transport and its impact on hydrocarbon accumulation: two cases of Bodong and Miaoxi sag[J]. China Offshore Oil and Gas, 2014, 26(2):6-11.] |
[12] | 祁鹏, 郭刚, 任亚平, 等. 西湖凹陷始新世平湖运动的地质表征及其油气地质意义[J]. 现代地质, 2021, 35(4):1081-1105 QI Peng, GUO Gang, REN Yaping, et al. Geological characterization of the Eocene Pinghu Movement in the Xihu Sag and its hydrocarbon geological significace[J]. Geoscience, 2021, 35(4):1081-1105.] |
[13] | 柳广弟, 牛子铖, 陈哲龙, 等. 珠江口盆地陆丰凹陷在洼陷迁移控制下的油气成藏规律[J]. 石油学报, 2019, 40(S1):26-40 doi: 10.7623/syxb2019S1003 LIU Guangdi, NIU Zicheng, CHEN Zhelong, et al. Hydrocarbon accumulation patterns controlled by the migrated subsags in Lufeng sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1):26-40.] doi: 10.7623/syxb2019S1003 |
[14] | 王毅, 姜亮, 杨伟利. 丽水-椒江凹陷断裂构造运动学[J]. 地质科学, 2000, 35(4):441-448 doi: 10.3321/j.issn:0563-5020.2000.04.007 WANG Yi, JIANG Liang, YANG Weili. Kinematical analysis on faults in the Lishui-Jiaojiang Sag[J]. Acta Geologica Sinica, 2000, 35(4):441-448.] doi: 10.3321/j.issn:0563-5020.2000.04.007 |
[15] | 张胜利, 夏斌. 丽水-椒江凹陷构造演化特征与油气聚集[J]. 天然气地球科学, 2005, 16(3):324-328 doi: 10.3969/j.issn.1672-1926.2005.03.014 ZHANG Shengli, XIA Bin. Characters of tectonic evolution of the Lishui - Jiaojiang Sag and oil accumulation[J]. Natural Gas Geoscience, 2005, 16(3):324-328.] doi: 10.3969/j.issn.1672-1926.2005.03.014 |
[16] | 田兵, 李小燕, 庞国印, 等. 叠合断陷盆地沉积体系分析—以东海丽水-椒江凹陷为例[J]. 沉积学报, 2012, 30(4):696-705 TIAN Bing, LI Xiaoyan, PANG Guoyin, et al. Sedimentary systems of the superimposed rift-subsidence basin: taking Lishui-Jiaojiang Sag of the East China Sea as an example[J]. Acta Sedimentologica Sinica, 2012, 30(4):696-705.] |
[17] | 侯国伟, 刘金水, 蔡坤, 等. 东海丽水凹陷古新统源-汇系统及控砂模式[J]. 地质科技通报, 2019, 38(2):65-74 HOU Guowei, LIU Jinshui, CAI Kun, et al. Source-to-sink system and sand-controlling model of Paleocene in Lishui Sag, East China Sea Basin[J]. Geological Science and Technology information, 2019, 38(2):65-74.] |
[18] | 仝志刚, 赵志刚, 杨树春, 等. 低勘探程度盆地烃源岩热演化及排烃史研究: 以东海椒江凹陷为例[J]. 石油实验地质, 2012, 34(3):319-324,329 doi: 10.3969/j.issn.1001-6112.2012.03.016 TONG Zhigang, ZHAO Zhigang, YANG Shuchun, et al. Research on thermal evolution and hydrocarbon expulsion history of source rocks in low-exploration basins: a case study on Jiaojiang Sag, East China Sea Basin[J]. Petroleum Geology & Experiment, 2012, 34(3):319-324,329.] doi: 10.3969/j.issn.1001-6112.2012.03.016 |
[19] | 殷世艳, 何生, 雷闯, 等. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩特征及生排烃史[J]. 海洋地质前沿, 2014, 30(8):35-41,65 YIN Shiyan, HE Sheng, LEI Chuang, et al. Characteristics and hydrocarbon generation-expulsion history of Yueguifeng Formation source rock in Lishui-Jiaojiang Depression, East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2014, 30(8):35-41,65.] |
[20] | 田杨, 叶加仁, 雷闯, 等. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩发育控制因素及形成模式[J]. 地球科学, 2016, 41(9):1561-1571 TIAN Yang, YE Jiaren, LEI Chuang, et al. Development controlling factors and forming model for source rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin[J]. Earth Science, 2016, 41(9):1561-1571.] |
[21] | 陈晓东, 蒋一鸣, 漆滨汶, 等. 东海丽水凹陷古新统非典型湖相烃源岩及油气特征[J]. 海洋地质前沿, 2021, 37(4):25-38 CHEN Xiaodong, JIANG Yiming, QI Binwen, et al. An atypical lacustrine source rock and its petroleum characteristics in the Lishui Sag of the East China Sea[J]. Marine Geology Frontiers, 2021, 37(4):25-38.] |
[22] | 李三忠, 臧艺博, 王鹏程, 等. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 2017, 24(4):213-225 LI Sanzhong, ZANG Yibo, WANG Pengcheng, et al. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction[J]. Earth Science Frontiers, 2017, 24(4):213-225.] |
[23] | 刘金水, 许怀智, 蒋一鸣, 等. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报, 2020, 94(3):675-691 doi: 10.3969/j.issn.0001-5717.2020.03.001 LIU Jinshui, XV Huaizhi, JIANG Yiming, et al. Mesozoic and Cenozoic basin structure and tectonic evolution in the East China Sea Basin[J]. Acta Geologica Sinica, 2020, 94(3):675-691.] doi: 10.3969/j.issn.0001-5717.2020.03.001 |
[24] | 郭刚, 廖计华, 徐建永, 等. 椒江凹陷下古新统月桂峰组半深湖-深湖相烃源岩综合识别与分布预测[J]. 海洋地质与第四纪地质, 2024, 44(2):199-209 GUO Gang, LIAO Jihua, XU Jianyong, et al. Comprehensive recognition and distribution prediction of semi-deep and deep lacustrine source rock of the Lower Paleocene Yueguifeng Formation in Jiaojiang Sag[J]. Marine Geology & Quaternary Geology, 2024, 44(2):199-209.] |
[25] | 覃军, 张迎朝, 刘金水, 等. 东海陆架盆地丽水-椒江凹陷古新统L气田成藏过程与主控因素[J]. 天然气地球科学, 2022, 33(4):605-617 QIN Jun, ZHANG Yingzhao, LIU Jinshui, et al. Hydrocarbon accumulation process and main controlling factors of Paleocene L Gas Field in Lishui-Jiaojiang Sag, East China Sea Shelf Basin[J]. Natural Gas Geoscience, 2022, 33(4):605-617.] |
[26] | 孙玉梅, 席小应. 东海盆地丽水凹陷油气源对比与成藏史[J]. 石油勘探与开发, 2003, 30(6): 24-28 SUN Yumei, XI Xiaoying. Petroleum reservoir filling history and oil source correlation in the Lishui Sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2003, 30(6): 2 4-28.] |
[27] | 索艳慧, 李三忠, 戴黎明, 等. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报, 2012, 28(8):2602-2618 SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8):2602-2618.] |
[28] | 蒋一鸣, 何新建, 张绍亮. 东海陆架盆地“反转-改造”构造迁移演化特征—以西湖凹陷边缘构造为例[J]. 长江大学学报: 自然科学版, 2016, 13(26):1-8 JIANG Yiming, HE Xinjian, ZHANG Shaoliang. The characteristics of "inverse-transform" tectonic migration evolution of the East China Sea Shelf Basin - by taking the marginal structure of Xihu Sag for example[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(26):1-8.] |
[29] | 钟锴, 朱伟林, 高顺莉, 等. 东海陆架盆地形成演化及油气成藏关键地质问题[J]. 地球科学, 2018, 43(10):3485-3497 ZHONG Kai, ZHU Weilin, GAO Shunli, et al. Key geological questions of the formation and evolution and hydrocarbon accumulation of the East China Sea Shelf Basin[J]. Earth Science, 2018, 43(10):3485-3497.] |
[30] | Hinsbergen D V, Peter L, Guillaume D N, et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia[J]. Proceedings of the National Academy of Sciences, 2012, 109(20):7659-7664. doi: 10.1073/pnas.1117262109 |
[31] | 包汉勇, 郭战峰, 张罗磊, 等. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3):337-338 doi: 10.11867/j.issn.1001-8166.2013.03.0337 BAO Hanyong, GUO Zhanfeng, ZHANG Luolei, et al. Tectonic dynamics of eastern China since the formation of the Pacific plate[J]. Advances in Earth Science, 2013, 28(3):337-338.] doi: 10.11867/j.issn.1001-8166.2013.03.0337 |
[32] | Zhu R X, Zhang H F, Zhu G, et al. Craton destruction and related resources[J]. International Journal of Earth Sciences, 2017, 106(7):2233-2257. doi: 10.1007/s00531-016-1441-x |
[33] | 朱光, 刘程, 顾承串, 等. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学: 地球科学, 2018, 48(4): 415-435 ZHU Guang, LIU Cheng, GU Chengchuan, et al. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the TanLu Fault Zone. Science China Earth Sciences, 2018, 48(4): 415-435. |
[34] | 周心怀, 蒋一鸣, 唐贤君. 西湖凹陷成盆背景、原型盆地演化及勘探启示[J]. 中国海上油气, 2019, 31(3):1-10 ZHOU Xinhuai, JIANG Yiming, TANG Xianjun. Tectonic setting, prototype basin evolution and exploration enlightenment of Xihu sag in East China Sea Basin[J]. China Offshore Oil and Gas, 2019, 31(3):1-10.] |
[35] | Tsung-Jui Wu J, Wu J. Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin[J]. Geology, 2019, 47(10):953-957. doi: 10.1130/G46778.1 |
[36] | 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气, 2015, 27(3):1-9 LI Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3):1-9.] |
[37] | 米立军, 张功成, 刘志峰, 等. 中国近海富油凹陷湖相优质烃源岩发育机制[J]. 石油学报, 2023, 44(3):405-419 doi: 10.7623/syxb202303001 MI Lijun, ZHANG Gongcheng, LIU Zhifeng, et al. Discussion on the development mechanism of lacustrine high-quality source rocks in oil-rich sags in offshore China[J]. Acta Petrolei Sinica, 2023, 44(3):405-419.] doi: 10.7623/syxb202303001 |
Tectonic location and structure of the Lishui Sag
Comprehensive stratigraphic column of the Lishui Sag[24]
Structural characteristics of Lishui Sag
Characteristics of the stratigraphic thickness of the Yueguifeng Formation (a), Lingfeng Formation (b), and Mingyuefeng Formation (c) in Lishui Sag
Activity rates of the Lixi fault and Lidong fault in the Paleocene Lishui Sag
Sedimentary facies of the Yueguifeng Formation (a) and Lingfeng Formation (b) in the Lishui Sag
Organic matter abundance of the source rock in Yueguifeng Formation (a) and Lingfeng Formation (b) in well W1 and well W2 in Lishui Sag
Distribution of current maturity (Ro) of source rocks in Yueguifeng Formation (a) and Lingfeng Formation (b) of Lishui Sag
Source rock expulsion intensity of Yueguifeng Formation (a) and Lingfeng Formation (b) in Lishui Sag