2025 Vol. 45, No. 2
Article Contents

CAI Song, PENG Guangrong, ZHENG Jinyun, LI Zhensheng, CHEN Zhaoming, ZHU Dingwei. Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 133-145. doi: 10.16562/j.cnki.0256-1492.2023110102
Citation: CAI Song, PENG Guangrong, ZHENG Jinyun, LI Zhensheng, CHEN Zhaoming, ZHU Dingwei. Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 133-145. doi: 10.16562/j.cnki.0256-1492.2023110102

Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin

  • In recent years, there have been continuous discoveries and exploration in the Western Baiyun Sag, PRMB (The Pearl River Mouth Basin). However, few studies have been conducted on the characteristics of sedimentary paleoenvironment and there is a lack of systematic reconstruction, which could hinder future exploration of the study area. To systematically reconstruct the Paleogene paleoenvironment including paleoclimate, paleowater depth, and ancient landform, quantitative paleoenvironmental recovery methods were developed based on the paleontology, geophysical logging, geochemical and rock physical properties data of the study area. Results show that, from the Wenchang Formation to the Zhuhai Formation, both paleoprecipitation and paleotemperature decreased, ancient landforms continue to flatten and then stabilized due to the weakening detachment fault activity, and the paleowater depth centers were gradually reduced and migrated to the Baiyun Sag, showing an evolution pattern of from narrow deep basin to wide gentle basin and to wide shallow basin. During the period of the Wenchang Formation, the climate of the Western Baiyun Sag was warm and humid, the supply of organic matter was sufficient. Steeper terrain and several deep-water lakes were developed in the early stage. Material supply is from multi-point combined with near-source supply, which resulted in hydrocarbon sources in medium-deep multi-deepwater-centered lake facies, while in the late stage, the deep-water centers merged, and the supply of sources showed a bi-directional source joined with relatively far sources, which resulted in the medium-shallow lake-facies hydrocarbon source rocks with converging deep-water centers. During the period from the Enping Formation to the Zhuhai Formation, the temperature decreased, and a cooler climate occurred in the late stage. The landform underwent flattening, while the water became shallower. The paleowater depth centers further converged. Source supply changes from intra-basin to intra-and-inter-basin distant source, with relatively less organic matter supply. As a result, there were poorly developed, shallow lake-facies hydrocarbon source rocks in paleowater depth centers. The quantitative reconstruction of paleoenvironment have significant implications for studying the evolution of the lake basin, the source-sink system, and predicting high-quality hydrocarbon source rocks in the Western Baiyun Sag, which will serve as a theoretical foundation for the later stages of regional oil and gas exploration.

  • 加载中
  • [1] 陈洁, 温宁, 李学杰. 南海油气资源潜力及勘探现状[J]. 地球物理学进展, 2007, 22(4):1285-1294

    Google Scholar

    CHEN Jie, WEN Ning, LI Xuejie. The status of the resource potential and petroleum exploration of the South China Sea[J]. Progress in Geophysics, 2007, 22(4):1285-1294.]

    Google Scholar

    [2] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318:1-14. doi: 10.1016/j.margeo.2012.05.003

    CrossRef Google Scholar

    [3] 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6):146-155

    Google Scholar

    WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6):146-155.]

    Google Scholar

    [4] 罗东红, 梁卫, 李熙盛, 等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气, 2011, 23(2):71-75

    Google Scholar

    LUO Donghong, LIANG Wei, Li Xisheng, et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng13-1 oilfield, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(2):71-75.]

    Google Scholar

    [5] 田立新, 施和生, 刘杰, 等. 珠江口盆地惠州凹陷新领域勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(4):22-30

    Google Scholar

    TIAN Lixin, SHI Hesheng, LIU Jie, et al. Great discovery and significance of new frontier exploration in Huizhou Sag, Pearl River Mouth Basin[J]. China Petroleum Exploration, 2020, 25(4):22-30.]

    Google Scholar

    [6] 高阳东, 彭光荣, 陈兆明, 等. 珠江口盆地开平凹陷油气地质新认识与勘探突破[J]. 中国海上油气, 2023, 35(1):1-13

    Google Scholar

    GAO Yangdong, PENG Guangrong, CHEN Zhaoming, et al. New understanding and exploration breakthrough of petroleum geology in Kaiping Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2023, 35(1):1-13.]

    Google Scholar

    [7] 刘军, 彭光荣, 郑金云, 等. 珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应[J]. 石油与天然气地质, 2023, 44(3):600-612

    Google Scholar

    LIU Jun, PENG Guangrong, ZHENG Jinyun, et al. Sedimentary transformation and source-to-sink response to the Eocene rifting-detachment in the western Baiyun Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(3):600-612.]

    Google Scholar

    [8] Ma M, Lei C, Rahman M J J. Paleoenvironmental reconstruction of the Eocene sediments in the Baiyun Sag of the Pearl River Mouth Basin[J]. Frontiers of Earth Science, 2023, 11:1177240. doi: 10.3389/feart.2023.1177240

    CrossRef Google Scholar

    [9] Wang C, Zeng J H, Zhang Z T, et al. Origin and distribution of natural gas and oil in the Baiyun Depression, Pearl River Mouth Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2018, 170:467-475. doi: 10.1016/j.petrol.2018.06.056

    CrossRef Google Scholar

    [10] 文静, 赵靖舟, 李军, 等. 白云凹陷中深层古近系砂岩储层特征及溶蚀作用对优质储层的控制作用[J]. 特种油气藏, 2022, 29(6):47-55

    Google Scholar

    WEN Jing, ZHAO Jingzhou, LI Jun, et al. Characteristics of Mid-Deep Paleogene sandstone reservoirs in Baiyun Sag and controlling effect of Dissolution on high-quality reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(6):47-55.]

    Google Scholar

    [11] 谢世文, 柳保军, 庞雄, 等. 珠江口盆地白云凹陷裂陷期沉积环境演化与控烃作用[J]. 天然气地球科学, 2023, 34(2):296-311

    Google Scholar

    XIE Shiwen, LIU Baojun, PANG Xiong, et al. Sedimentary environment evolution and hydrocarbon control in Baiyun Sag of Pearl River Mouth Basin during rifting Period[J]. Natural Gas Geoscience, 2023, 34(2):296-311.]

    Google Scholar

    [12] Sun Q L, Alves T M, Wu S G, et al. Early Miocene magmatism in the Baiyun Sag (South China Sea): a view to the origin of intense post-rift magmatism[J]. Gondwana Research, 2023, 120:127-144. doi: 10.1016/j.gr.2022.05.013

    CrossRef Google Scholar

    [13] Chen C, Zhang X T, Peng G R, et al. Controlling factors on the charging process of oil and gas in the eastern main Sub-Sag of the Baiyun Sag, Zhujiang River (Pearl River) Mouth Basin[J]. Acta Oceanologica Sinica, 2023, 42(3):189-200. doi: 10.1007/s13131-022-2140-z

    CrossRef Google Scholar

    [14] 刘豪, 徐长贵, 高阳东, 等. 断陷湖盆低勘探区源-汇系统与烃源岩预测: 以珠江口盆地珠一坳陷北部洼陷区为例[J]. 石油与天然气地质, 2023, 44(3):565-583

    Google Scholar

    LIU Hao, XU Changgui, GAO Yangdong, et al. Source-to-sink system and hydrocarbon source rock prediction of underexplored areas in rifted lacustrine basins: a case study on northern lows in Zhu I Depression, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(3):565-583.]

    Google Scholar

    [15] 何雁兵, 雷永昌, 邱欣卫, 等. 珠江口盆地陆丰南地区文昌组沉积古环境及烃源岩有机质富集主控因素研究[J/OL]. 地学前缘.

    Google Scholar

    3-03-31). https: //doi. org/10.13745/j. esf. sf. 2023.2. 74. [HE Yanbing, LEI Yongchang, QIU Xinwei, et al. Study on sedimentary paleoenvironment and main controlling factors of organic matter enrichment in source rocks of Wenchang Formation in the southern Lufeng area, Pearl River Mouth Basin[J/OL]. Earth Science Frontiers. (2023-03-31).https://doi.org/10.13745/j.esf.sf.2023.2.74.

    Google Scholar

    [16] 石创, 龙祖烈, 朱俊章, 等. 珠江口盆地白云凹陷恩平组泥岩元素地球化学特征及环境指示意义[J]. 海洋地质与第四纪地质, 2020, 40(5):79-86

    Google Scholar

    SHI Chuang, LONG Zulie, ZHU Junzhang, et al. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5):79-86.]

    Google Scholar

    [17] 柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区沉积充填演化及控制因素分析[J]. 中国海上油气, 2011, 23(1):19-25

    Google Scholar

    LIU Baojun, PANG Xiong, YAN Chengzhi, et al. An analysis of depositional evolution and its controls in Baiyun deep-water area, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(1):19-25.]

    Google Scholar

    [18] 陈留勤, 刘鑫, 李鹏程. 古土壤: 沉积环境和古气候变化的灵敏指针[J]. 沉积学报, 2018, 36(3):510-520

    Google Scholar

    CHEN Liuqin, LIU Xin, LI Pengcheng. Paleosols: sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3):510-520.]

    Google Scholar

    [19] 侯光良, 鄂崇毅, 肖景义, 等. 重建古气温的环境证据-方法差异性分析[J]. 地球学报, 2011, 32(4):455-462

    Google Scholar

    HOU Guangliang, E Chongyi, XIAO Jingyi, et al. The sensitivity analysis of reconstructing ancient temperatures by different circumstantial evidence and methods[J]. Acta Geoscientica Sinica, 2011, 32(4):455-462.]

    Google Scholar

    [20] 侯学文, 施泽进, 孙泽轩, 等. 川北苍溪地区白垩系红层沉积孢粉组合及其地质意义[J]. 地质论评, 2020, 66(3):727-738

    Google Scholar

    HOU Xuewen, SHI Zejin, SUN Zexuan, et al. The sporopollen assemblages in the Early Cretaceous red sediments in Cangxi area, northern Sichuan Basin and their geological significance[J]. Geological Review, 2020, 66(3):727-738.]

    Google Scholar

    [21] 史德锋, 祝幼华. 缅甸英雄岛始新世孢粉组合及其古环境意义[J]. 石油实验地质., 2024, 46(1):136-145

    Google Scholar

    SHI Defeng, ZHU Youhua. Eocene sporopollen assemblage from Ramree Island, Burma and its palaeoenvironment significance[J]. Petroleum Geology & Experiment, 2024, 46(1):136-145.]

    Google Scholar

    [22] 罗伦德. 第四纪孢粉分析中古气温、古降水指数的计算方法: 以成都锦江一级阶地研究为例[J]. 贵州师范大学学报:自然科学版, 1996, 14(3):42-50

    Google Scholar

    LUO Lunde. The method for calculating Quaternary air-temperature and water-precipitation index in the pollen-spore analysis—for example to study I-step terrace of Jinjiang River, Chengdu Plain[J]. Journal of Guizhou Normal University:Natural Science, 1996, 14(3):42-50.]

    Google Scholar

    [23] 舒梁锋, 代一丁, 朱明, 等. 基于沉积构型半定量化恢复古水深: 以珠江口盆地白云凹陷为例[J]. 海洋地质前沿, 2022, 38(5):51-59

    Google Scholar

    SHU Liangfeng, DAI Yiding, ZHU Ming, et al. Semi-quantitative restoration of paleobathymetric of Baiyun Sag of Pearl River Mouth Basin based on depositional architecture[J]. Marine Geology Frontiers, 2022, 38(5):51-59.]

    Google Scholar

    [24] 吴智平, 周瑶琪. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3):395-399

    Google Scholar

    WU Zhiping, ZHOU Yaoqi. Using the characteristic elements from Meteoritic Must in Strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 2000, 18(3):395-399.]

    Google Scholar

    [25] 雷华蕊, 姜在兴, 周红科. 早古近纪极热时期古气候演化分析: 以东营凹陷为例[J]. 地学前缘, 2018, 25(4):176-184

    Google Scholar

    LEI Huarui, JIANG Zaixing, ZHOU Hongke. Analysis of paleoclimate evolution of the hyperthermal Period in the Early Paleogene: taking the Dongying Depression as an example[J]. Earth Science Frontiers, 2018, 25(4):176-184.]

    Google Scholar

    [26] 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3):521-538

    Google Scholar

    XU Changgui, GONG Chenglin. Predictive stratigraphy: from sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology, 2023, 44(3):521-538.]

    Google Scholar

    [27] 聂银兰, 朱筱敏, 董艳蕾, 等. 陆相断陷盆地源—汇系统要素表征及研究展望[J]. 地质论评, 2022, 68(5):1881-1896

    Google Scholar

    NIE Yinlan, ZHU Xiaomin, DONG Yanlei, et al. Characterization and research prospect of source-to-sink system elements in continental rift Basin[J]. Geological Review, 2022, 68(5):1881-1896.]

    Google Scholar

    [28] 米立军, 张功成, 沈怀磊, 等. 珠江口盆地深水区白云凹陷始新统—下渐新统沉积特征[J]. 石油学报, 2008, 29(1):29-34

    Google Scholar

    MI Lijun, ZHANG Gongcheng, SHEN Huailei, et al. Eocene-Lower Oligocene sedimentation characteristics of Baiyun Sag in the deep water area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2008, 29(1):29-34.]

    Google Scholar

    [29] 郭帅, 杨海长, 曾清波, 等. 白云凹陷恩平组南部物源研究及其油气地质意义[J]. 海洋地质前沿, 2020, 36(6):56-63

    Google Scholar

    GUO Shuai, YANG Haizhang, ZENG Qingbo, et al. Provenance of Enping Formation in the southern Baiyun Sag, Pearl River Mouth Basin and its implications for petroleum geology[J]. Marine Geology Frontiers, 2020, 36(6):56-63.]

    Google Scholar

    [30] 侯元立, 邵磊, 乔培军, 等. 珠江口盆地白云凹陷始新世— 中新世沉积物物源研究[J]. 海洋地质与第四纪地质, 2020, 40(2):19-28

    Google Scholar

    HOU Yuanli, SHAO Lei, QIAO Peijun, et al. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(2):19-28.]

    Google Scholar

    [31] Meng Q T, Liu Z J, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun Basin, China[J]. Journal of Asian Earth Sciences, 2012, 45:95-105. doi: 10.1016/j.jseaes.2011.09.021

    CrossRef Google Scholar

    [32] 陈斌, 李勇, 邓涛, 等. 晚三叠世龙门山前陆盆地须家河组泥页岩沉积环境及有机质富集模式[J]. 地质科学, 2019, 54(2):434-451

    Google Scholar

    CHEN Bin, LI Yong, DENG Tao, et al. The sedimentary environment and organic matter enrichment pattern of Xujiahe Formation shale in the Late Triassic Longmenshan foreland Basin, SW China[J]. Chinese Journal of Geology, 2019, 54(2):434-451.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(17) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint