2025 Vol. 45, No. 2
Article Contents

LI Zhen, QIN Guojin, ZHU Guangkun, LI Xingrui, ZHANG Yurui. The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301
Citation: LI Zhen, QIN Guojin, ZHU Guangkun, LI Xingrui, ZHANG Yurui. The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 12-21. doi: 10.16562/j.cnki.0256-1492.2024061301

The response of the Western Pacific to high-and low-sea levels: based on ROMS experiments

More Information
  • Superimposed on tectonic movements, sea level changes during geologic history caused coastline advancement and retreat, exposing shallow shelf or submerging coastal regions, and thus influencing regional ocean currents and global ocean circulation. The Regional Ocean Model (ROMS) was used to simulate the response of the West Pacific thermohaline pattern and major ocean currents in the low sea level scenarios, e.g., the SLdrop120 (sea level drop by 120 m) case during the last glacial maximum (LGM), and the high sea level scenarios, e.g., the SLrise65 (sea level rise by 65 m) case during the global ice sheet melting. Results show that sea level rise and fall have more significant non-linear influences on ocean currents than on temperature and salinity schemes. Compared with the modern sea level, the extremely low sea level led to the exposure of the near-shore shelf sea and the closure of the Taiwan Strait, cutting off the invasion of the western boundary current into the South China Sea, causing the Kuroshio transport in the East China Sea to move toward the open sea and reducing the flow rate in the main axis section. Compared with previous research results considering the LGM glacial climate state, this decreasing trend indicates that the effects of sea level drop during the LGM period and glacial climate driving offset each other. The high sea level pushes the shoreline landward, the area of coastal waters such as the Bohai Sea increases, and the Taiwan Strait widens, causing the western boundary current to expand westward, which would diverse the mainstream of the Kuroshio. Regarding the Indonesian Throughflow (ITF), which controls the exchange between the Pacific and Indian Oceans, its western branch path responds more significantly to sea level changes due to its shallower depth. Under the extreme low sea level scenario, the Karimata Strait is closed and the western branch of the ITF is cut off, so the freshwater blocking effect from the western branch disappears, which leads to an increase of 2.31 Sv (1 Sv=1×106 m3/s) in the flow through the Makassar Strait. On the contrary, under the high sea level scenario, both the Karimata Strait and the Makassar Strait on the west side are widened, and the Torres Strait is opened, which makes the flow into the Indian Ocean larger than the modern sea level scenario. This study demonstrated that the responses of the Kuroshio and the Indonesian Throughflow in the western Pacific to the change of the coastline is nonlinear, and emphasized the important role of sea level changes in regional ocean currents during geological evolution.

  • 加载中
  • [1] Garwood Jr R W. Air-sea interaction and dynamics of the surface mixed layer[J]. Reviews of Geophysics, 1979, 17(7):1507-1524. doi: 10.1029/RG017i007p01507

    CrossRef Google Scholar

    [2] Wang J, Yuan D L, Zhao X. Impacts of Indonesian Throughflow on seasonal circulation in the equatorial Indian Ocean[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(6):1261-1274. doi: 10.1007/s00343-017-6196-0

    CrossRef Google Scholar

    [3] Yuan D L, Yin X L, Li X, et al. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow[J]. Nature Communications, 2022, 13(1):2093. doi: 10.1038/s41467-022-29617-6

    CrossRef Google Scholar

    [4] Hogg N G, Johns W E. Western boundary currents[J]. Reviews of Geophysics, 1995, 33(S2):1311-1334. doi: 10.1029/95RG00491

    CrossRef Google Scholar

    [5] 张灿影, 冯志纲, 张晓琨, 等. 黑潮研究进展分析[J]. 世界科技研究与发展, 2017, 39(3):239-249

    Google Scholar

    ZHANG Canying, FENG Zhigang, ZHANG Xiaokun, et al. Analysis on research progress of kuroshio[J]. World Sci-Tech R& D, 2017, 39(3):239-249.]

    Google Scholar

    [6] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556):299-308.

    Google Scholar

    [7] Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037

    CrossRef Google Scholar

    [8] Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 2004, 17(18):3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    CrossRef Google Scholar

    [9] Fang G H, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6):946-954.

    Google Scholar

    [10] Wajsowicz R C. A relationship between interannual variations in the south pacific wind stress curl, the Indonesian throughflow, and the west pacific warm water pool[J]. Journal of Physical Oceanography, 1994, 24(10):2180-2187. doi: 10.1175/1520-0485(1994)024<2180:ARBIVI>2.0.CO;2

    CrossRef Google Scholar

    [11] Du Y, Qu T D. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):233-256. doi: 10.1016/j.dynatmoce.2010.04.001

    CrossRef Google Scholar

    [12] Fang G H, Wei Z X, Choi B H, et al. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model[J]. Science in China Series D: Earth Sciences, 2003, 46(2):149-161. doi: 10.1360/03yd9014

    CrossRef Google Scholar

    [13] 张晶, 魏泽勋, 李淑江, 等. 太平洋—印度洋贯穿流南海分支研究综述[J]. 海洋科学进展, 2014, 32(1):107-120 doi: 10.3969/j.issn.1671-6647.2014.01.013

    CrossRef Google Scholar

    ZHANG Jing, WEI Zexun, LI Shujiang, et al. Overviews on studies of the South China Sea branch of the Pacific-Indian Ocean throughflow[J]. Advances in Marine Science, 2014, 32(1):107-120.] doi: 10.3969/j.issn.1671-6647.2014.01.013

    CrossRef Google Scholar

    [14] Qu T D, Du Y, Sasaki H. South China Sea throughflow: a heat and freshwater conveyor[J]. Geophysical Research Letters, 2006, 33(23):L23617.

    Google Scholar

    [15] Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11):L11602.

    Google Scholar

    [16] Sprintall J, Gordon A L, Koch-Larrouy A, et al. The Indonesian seas and their role in the coupled ocean–climate system[J]. Nature Geoscience, 2014, 7(7):487-492. doi: 10.1038/ngeo2188

    CrossRef Google Scholar

    [17] Straume E O, Gaina C, Medvedev S, et al. Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways[J]. Gondwana Research, 2020, 86:126-143. doi: 10.1016/j.gr.2020.05.011

    CrossRef Google Scholar

    [18] 王绍武. 冰期-间冰期旋回[J]. 气候变化研究进展, 2008, 4(1):61-62

    Google Scholar

    WANG Shaowu. Glacial-interglacial cycles[J]. Climate Change Research, 2008, 4(1):61-62.]

    Google Scholar

    [19] 王凡, 胡敦欣, 穆穆, 等. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6):595-602

    Google Scholar

    WANG Fan, HU Dunxin, MU Mu, et al. Structure, variations and climatic impacts of ocean circulation and the warm pool in the tropical Pacific Ocean[J]. Advances in Earth Science, 2012, 27(6):595-602.]

    Google Scholar

    [20] Tang Z J, Zhang R H, Wang H N, et al. Mesoscale surface Wind-SST coupling in a high-resolution CESM over the KE and ARC regions[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12):e2021MS002822. doi: 10.1029/2021MS002822

    CrossRef Google Scholar

    [21] 赵宗慈, 罗勇, 黄建斌. 全球变暖和海平面上升[J]. 气候变化研究进展, 2019, 15(6):700-703

    Google Scholar

    ZHAO Zongci, LUO Yong, HUANG Jianbin. Global warming and sea level rising[J]. Climate Change Research, 2019, 15(6):700-703.]

    Google Scholar

    [22] 赵子荟, 马文涛, 张晓. 末次冰盛期黑潮变化的数值模拟[J]. 第四纪研究, 2023, 43(4):1029-1041 doi: 10.11928/j.issn.1001-7410.2023.04.11

    CrossRef Google Scholar

    ZHAO Zihui, MA Wentao, ZHANG Xiao. Numerical simulation of the kuroshio current during the last glacial maximum[J]. Quaternary Sciences, 2023, 43(4):1029-1041.] doi: 10.11928/j.issn.1001-7410.2023.04.11

    CrossRef Google Scholar

    [23] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4):347-404. doi: 10.1016/j.ocemod.2004.08.002

    CrossRef Google Scholar

    [24] 周立佳, 党振中, 董慧超, 等. 基于ROMS模式的东海黑潮季节变化特征模拟研究[J]. 舰船电子工程, 2016, 36(7):91-94,153 doi: 10.3969/j.issn.1672-9730.2016.07.023

    CrossRef Google Scholar

    ZHOU Lijia, DANG Zhenzhong, DONG Huichao, et al. Seasonal variation characteristics of the Kuroshio in the East China Sea based on ROMS[J]. Ship Electronic Engineering, 2016, 36(7):91-94,153.] doi: 10.3969/j.issn.1672-9730.2016.07.023

    CrossRef Google Scholar

    [25] 陈毓敏, 项杰, 杜华栋, 等. 基于拉格朗日方法对黑潮路径的数值模拟[J]. 海洋预报, 2019, 36(6):22-28 doi: 10.11737/j.issn.1003-0239.2019.06.003

    CrossRef Google Scholar

    CHEN Yumin, XIANG Jie, DU Huadong, et al. Numerical simulation of Kuroshio path based on Lagrangian method[J]. Marine Forecasts, 2019, 36(6):22-28.] doi: 10.11737/j.issn.1003-0239.2019.06.003

    CrossRef Google Scholar

    [26] Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica[J]. The Cryosphere, 2013, 7(1):375-393. doi: 10.5194/tc-7-375-2013

    CrossRef Google Scholar

    [27] Clark P U, Mix A C. Ice sheets and sea level of the Last Glacial Maximum[J]. Quaternary Science Reviews, 2002, 21(1-3):1-7. doi: 10.1016/S0277-3791(01)00118-4

    CrossRef Google Scholar

    [28] Shapiro R. Linear filtering[J]. Mathematics of Computation, 1975, 29(132):1094-1097. doi: 10.1090/S0025-5718-1975-0389356-X

    CrossRef Google Scholar

    [29] Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: a numerical study[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4):C04002.

    Google Scholar

    [30] Wei Y Z, Huang D J, Zhu X H. Interannual to decadal variability of the Kuroshio Current in the East China Sea from 1955 to 2010 as indicated by in-situ hydrographic data[J]. Journal of Oceanography, 2013, 69(5):571-589. doi: 10.1007/s10872-013-0193-5

    CrossRef Google Scholar

    [31] Yuan Y C, Kaneko A, Su J L, et al. The Kuroshio East of Taiwan and in the East China Sea and the currents East of Ryukyu Islands during early summer of 1996[J]. Journal of Oceanography, 1998, 54(3):217-226. doi: 10.1007/BF02751697

    CrossRef Google Scholar

    [32] Gordon A L, Napitu A, Huber B A, et al. Makassar strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6):3724-3736. doi: 10.1029/2018JC014502

    CrossRef Google Scholar

    [33] Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004–2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9):C09013.

    Google Scholar

    [34] Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):115-128. doi: 10.1016/j.dynatmoce.2009.12.002

    CrossRef Google Scholar

    [35] Liang L L, Xue H J, Shu Y Q. The Indonesian throughflow and the circulation in the Banda Sea: a modeling study[J]. Journal of Geophysical Research: Oceans, 2019, 124(5):3089-3106. doi: 10.1029/2018JC014926

    CrossRef Google Scholar

    [36] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7):C07001.

    Google Scholar

    [37] Wang J, Zhang Z B, Li X, et al. Moored observations of the Timor passage currents in the Indonesian Seas[J]. Journal of Geophysical Research: Oceans, 2022, 127(11):e2022JC018694. doi: 10.1029/2022JC018694

    CrossRef Google Scholar

    [38] Nan F, Xue H J, Yu F. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137:314-333. doi: 10.1016/j.pocean.2014.05.012

    CrossRef Google Scholar

    [39] Tozuka T, Qu T D, Yamagata T. Dramatic impact of the South China Sea on the Indonesian Throughflow[J]. Geophysical Research Letters, 2007, 34(12):L12612.

    Google Scholar

    [40] Tozuka T, Qu T D, Masumoto Y, et al. Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1-3):73-85. doi: 10.1016/j.dynatmoce.2008.09.001

    CrossRef Google Scholar

    [41] Wu C R, Wang Y L, Lin Y F, et al. Intrusion of the Kuroshio into the South and East China Seas[J]. Scientific Reports, 2017, 7(1):7895. doi: 10.1038/s41598-017-08206-4

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(235) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint