Citation: | FANG Liangcong, ZOU Jianjun, DOU Ruxi, WANG Qingchao, ZHU Aimei, Gorbarenko Sergey, Vasilenko Yuriy, Bosin Aleksandr, SHI Xuefa. Evolution of sedimentary arsenic in the western Sea of Japan over the last 3 0000 years and its paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 1-11. doi: 10.16562/j.cnki.0256-1492.2024121101 |
Arsenic (As) is a redox-sensitive element widely distributed in the nature. However, its reliability as a proxy for tracing redox conditions in marine sediments remains controversial. The Sea of Japan, one of the most extensively developed marginal seas of the northwest Pacific, has experienced significant redox condition changes since the Last Glacial Period, making it a natural laboratory for understanding the evolution of sedimentary As. Through high-resolution analysis of As, Mo, and other parameters in sediments from core LV53-18-2, significant variations in As and Mo concentrations over the past 30 000 years in the western Sea of Japan were observed. During the Heinrich Stadial 1 (19~15 ka), the synchronous enrichments of As and Mo indicate anoxic or sulfidic conditions in sediments. In contrast, during the Last Glacial Period (30~19 ka) and the late deglacial – early Holocene (15~8 ka), asynchronous variations between As and Mo occurred. Seasonal sea ice activity not only increased the transport of terrestrial As to the sea but also accelerated the formation of deep water in the Sea of Japan and internal ventilation. Since 8 ka, both As and Mo concentrations were decreased synchronously. The improved global climate and sea level rising conditions enhanced the productivity at sea surface and biogenic material contributions in the Sea of Japan, which diluted the sedimentary As concentrations. Given the complexity of the As enrichment mechanisms in sediments, we suggest that As is not a reliable proxy for tracing redox changes in marine sediments, and its use in paleo-redox reconstructions should be validated in conjunction with other proxies.
[1] | Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 1-51. |
[2] | Brammer H, Ravenscroft P. Arsenic in groundwater: A threat to sustainable agriculture in South and South-East Asia[J]. Environment International, 2009, 35(3):647-654. doi: 10.1016/j.envint.2008.10.004 |
[3] | Wang S L, Mulligan C N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution[J]. Science of the Total Environment, 2006, 366(2-3):701-721. doi: 10.1016/j.scitotenv.2005.09.005 |
[4] | Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145. doi: 10.1126/science.1072375 |
[5] | Tribovillard N. Arsenic in marine sediments: how robust a redox proxy?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550:109745. doi: 10.1016/j.palaeo.2020.109745 |
[6] | Fendorf S, La Force M J, Li G C. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead[J]. Journal of Environmental Quality, 2004, 33(6):2049-2055. doi: 10.2134/jeq2004.2049 |
[7] | Matschullat J. Arsenic in the geosphere: a review[J]. The Science of the Total Environment, 2000, 249(1-3):297-312. doi: 10.1016/S0048-9697(99)00524-0 |
[8] | Kanel S R, Grenèche J M, Choi H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6):2045-2050. |
[9] | Wang S L, Mulligan C N. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater[J]. Journal of Hazardous Materials, 2006, 138(3):459-470. doi: 10.1016/j.jhazmat.2006.09.048 |
[10] | O’Day A, Vlassopoulos D, Root R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13703-13708. |
[11] | Meng X G, Jing C Y, Korfiatis G P. A review of redox transformation of arsenic in aquatic environments[C]//Biogeochemistry of Environmentally Important Trace Elements. Washington D C: American Chemical Society, 2002: 70-83. |
[12] | Wang P X. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4):5-39. doi: 10.1016/S0025-3227(98)00172-8 |
[13] | Usami K, Ohi T, Hasegawa S, et al. Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160-15ka: Associations with insolation changes[J]. Marine Micropaleontology, 2013, 101:10-27. doi: 10.1016/j.marmicro.2013.03.006 |
[14] | Seki A, Tada R, Kurokawa S, et al. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner[J]. Progress in Earth and Planetary Science, 2019, 6(1):1. doi: 10.1186/s40645-018-0244-z |
[15] | Dong Z, Shi X F, Zou J J, et al. Paleoceanographic insights on meridional ventilation variations in the Japan Sea since the Last Glacial Maximum: A radiolarian assemblage perspective[J]. Global and Planetary Change, 2021, 200:103456. doi: 10.1016/j.gloplacha.2021.103456 |
[16] | 石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3):1-11 SHI Xuefa, ZOU Jianjun, YAO Zhengquan, et al. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3):1-11.] |
[17] | Menard H W, Smith S M. Hypsometry of ocean basin provinces[J]. Journal of Geophysical Research, 1966, 71(18):4305-4325. doi: 10.1029/JZ071i018p04305 |
[18] | Oba T, Kato M, Kitazato H, et al. Paleoenvironmental changes in the Japan Sea during the last 85, 000 years[J]. Paleoceanography, 1991, 6(4):499-518. doi: 10.1029/91PA00560 |
[19] | Kim K R, Kim G, Kim K, et al. A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea[J]. Geophysical Research Letters, 2002, 29(8):75-1-75-4. |
[20] | Yanagi T. Water, salt, phosphorus and nitrogen budgets of the Japan Sea[J]. Journal of Oceanography, 2002, 58(6):797-804. doi: 10.1023/A:1022815027968 |
[21] | Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2):Q02Q04. |
[22] | Kim K, Chang K I, Kang D J, et al. Review of recent findings on the water masses and circulation in the East Sea (Sea of Japan)[J]. Journal of Oceanography, 2008, 64(5):721-735. doi: 10.1007/s10872-008-0061-x |
[23] | Gamo T, Horibe Y. Abyssal circulation in the Japan Sea[J]. Journal of the Oceanographical Society of Japan, 1983, 39(5):220-230. doi: 10.1007/BF02070392 |
[24] | Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2):236-247. doi: 10.1029/1998PA900016 |
[25] | Yang L H, Long H, Yi L, et al. Luminescence dating of marine sediments from the Sea of Japan using quartz OSL and polymineral pIRIR signals of fine grains[J]. Quaternary Geochronology, 2015, 30:257-263. doi: 10.1016/j.quageo.2015.05.003 |
[26] | 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3):690-703 DOU Ruxi, ZOU Jianjun, SHI Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3):690-703.] |
[27] | Dou R X, Zou J J, Shi X F, et al. Geochemical and isotopic evidence for provenance of the western sea of Japan over the last 30000 years[J]. Frontiers in Earth Science, 2021, 9:638178. doi: 10.3389/feart.2021.638178 |
[28] | Dou R, Zou J J, Shi X F, et al. Provenance discrimination of siliciclastic sediments in the western sea of Japan over the past 30 kyr: Evidence from major, trace elements, and Pb isotopes[J]. Lithosphere, 2022, 2022:6045238. |
[29] | 李日升, 郭跃安, 孙冬娥, 等. 化学蒸气发生-多通道原子荧光光谱法同时测定化探样品中的砷、锑、铋、汞[J]. 理化检验(化学分册), 2014, 50(5):569-571 LI Risheng, GUO Yuean, SUN Donge, et al. Simultaneous determination of As, Sb, Bi and Hg in geological samples by HG-Multi-channel-AFS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(5):569-571.] |
[30] | 朱爱美, 石学法, 邹建军, 等. 88ka以来冲绳海槽北部物源及沉积通量演化[J]. 海洋地质与第四纪地质, 2015, 35(5):1-8 ZHU Aimei, SHI Xuefa, ZOU Jianjun, et al. Sediment provenance and fluxes in the northern Okinawa Trough during the last 88 ka[J]. Marine Geology & Quaternary Geology, 2015, 35(5):1-8.] |
[31] | 邹建军, 宗娴, 朱爱美, 等. 37ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4):123-135 ZOU Jianjun, ZONG Xian, ZHU Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4):123-135.] |
[32] | Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China: Weathering features, anthropogenic impact and chemical fluxes[J]. Estuarine, Coastal and Shelf Science, 2002, 54(6):1051-1070. doi: 10.1006/ecss.2001.0879 |
[33] | Woitke P, Wellmitz J, Helm D, et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube[J]. Chemosphere, 2003, 51(8):633-642. doi: 10.1016/S0045-6535(03)00217-0 |
[34] | Conrad C F, Chisholm-Brause C J. Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia[J]. Marine Pollution Bulletin, 2004, 49(4):319-324. doi: 10.1016/j.marpolbul.2004.02.019 |
[35] | Sutherland R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6):611-627. doi: 10.1007/s002540050473 |
[36] | Reinhard C T, Planavsky N J, Robbins L J, et al. Proterozoic ocean redox and biogeochemical stasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14):5357-5362. |
[37] | 彭俊文. 氧化还原敏感元素在海相沉积物中富集的其他控制因素: 海平面波动[J]. 中国科学: 地球科学, 2022, 52(11): 2254-2274 PENG Junwen. What besides redox conditions? Impact of sea-level fluctuations on redox-sensitive trace-element enrichment patterns in marine sediments[J]. Science China Earth Sciences, 2022, 65(10): 1985-2004.] |
[38] | Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E |
[39] | Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1-2):67-88. doi: 10.1016/0025-3227(93)90150-T |
[40] | 邹建军, 石学法, 刘焱光, 等. 末次冰期以来日本海陆源沉积的地球化学记录及其对海平面和气候变化的响应[J]. 海洋地质与第四纪地质, 2010, 30(2):75-86 ZOU Jianjun, SHI Xuefa, LIU Yanguang, et al. Geochemical record of terrigenous sediments from the Sea of Japan since Last Glacial and its response to sea level and climate change[J]. Marine Geology & Quaternary Geology, 2010, 30(2):75-86.] |
[41] | 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983, 18(4):307-314 ZHAO Yiyang. Some Geochemical Patterns of Shelf Sediments of the China Seas[J]. Scientia Geologica Sinica, 1983, 18(4):307-314.] |
[42] | 郭华明, 王焰新, 李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003, 24(4):60-67 GUO Huaming, WANG Yanxin, LI Yongmin. Analysis of factors resulting in anomalous arsenic concentration in groundwaters of Shanyin, Shanxi province[J]. Environmental Science, 2003, 24(4):60-67.] |
[43] | Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q |
[44] | Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4):1079-1092. doi: 10.5194/cp-12-1079-2016 |
[45] | Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326 |
[46] | Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591 |
[47] | Tsujisaka M, Nishida S, Takano S, et al. Constraints on redox conditions in the Japan Sea in the last 47, 000 years based on Mo and W as palaeoceanographic proxies[J]. Geochemical Journal, 2020, 54(6):351-363. doi: 10.2343/geochemj.2.0606 |
[48] | Ikehara K, Fujine K. Fluctuations in the late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9):866-872. doi: 10.1002/jqs.2573 |
[49] | Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6):1214-1220. doi: 10.1016/j.jseaes.2010.08.010 |
[50] | Nihashi S, Ohshima K I, Saitoh S I. Sea-ice production in the northern Japan Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 127:65-76. doi: 10.1016/j.dsr.2017.08.003 |
[51] | Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):350-360. doi: 10.1016/j.palaeo.2009.06.022 |
[52] | Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30ky: evidence from deep-dwelling radiolarians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(3-4):263-278. doi: 10.1016/j.palaeo.2004.03.010 |
[53] | Domitsu H, Oda M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27, 000 years: Evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4):155-170. doi: 10.1016/j.marmicro.2006.06.006 |
[54] | Dong Z, Shi X F, Zou J J, et al. Drastic hydrographic changes inferred from radiolarian assemblages in the central Japan Sea since the Last Glacial Maximum[J]. Marine Geology, 2020, 429:106295. doi: 10.1016/j.margeo.2020.106295 |
[55] | Zou J J, Shi X F, Zhu A M, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432:106393. doi: 10.1016/j.margeo.2020.106393 |
Schematic of surface ocean currents and sampling stations in the Sea of Japan
Time series of geochemical parameters of sediments in core LV53-18-2 since 30 ka
Correlation scatter plots among sedimentary As, major and trace elements and their ratios in core LV53-18-2
Correlation scatter plots among Mz, TOC, and sedimentary As in core LV53-18-2
Comparison of redox proxies in the Sea of Japan with other paleoenvironmental records
Patterns of paleoenvironmental evolution in the western Sea of Japan since 30 ka