2025 Vol. 45, No. 2
Article Contents

FANG Liangcong, ZOU Jianjun, DOU Ruxi, WANG Qingchao, ZHU Aimei, Gorbarenko Sergey, Vasilenko Yuriy, Bosin Aleksandr, SHI Xuefa. Evolution of sedimentary arsenic in the western Sea of Japan over the last 3 0000 years and its paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 1-11. doi: 10.16562/j.cnki.0256-1492.2024121101
Citation: FANG Liangcong, ZOU Jianjun, DOU Ruxi, WANG Qingchao, ZHU Aimei, Gorbarenko Sergey, Vasilenko Yuriy, Bosin Aleksandr, SHI Xuefa. Evolution of sedimentary arsenic in the western Sea of Japan over the last 3 0000 years and its paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 1-11. doi: 10.16562/j.cnki.0256-1492.2024121101

Evolution of sedimentary arsenic in the western Sea of Japan over the last 3 0000 years and its paleoenvironmental significance

More Information
  • Arsenic (As) is a redox-sensitive element widely distributed in the nature. However, its reliability as a proxy for tracing redox conditions in marine sediments remains controversial. The Sea of Japan, one of the most extensively developed marginal seas of the northwest Pacific, has experienced significant redox condition changes since the Last Glacial Period, making it a natural laboratory for understanding the evolution of sedimentary As. Through high-resolution analysis of As, Mo, and other parameters in sediments from core LV53-18-2, significant variations in As and Mo concentrations over the past 30 000 years in the western Sea of Japan were observed. During the Heinrich Stadial 1 (19~15 ka), the synchronous enrichments of As and Mo indicate anoxic or sulfidic conditions in sediments. In contrast, during the Last Glacial Period (30~19 ka) and the late deglacial – early Holocene (15~8 ka), asynchronous variations between As and Mo occurred. Seasonal sea ice activity not only increased the transport of terrestrial As to the sea but also accelerated the formation of deep water in the Sea of Japan and internal ventilation. Since 8 ka, both As and Mo concentrations were decreased synchronously. The improved global climate and sea level rising conditions enhanced the productivity at sea surface and biogenic material contributions in the Sea of Japan, which diluted the sedimentary As concentrations. Given the complexity of the As enrichment mechanisms in sediments, we suggest that As is not a reliable proxy for tracing redox changes in marine sediments, and its use in paleo-redox reconstructions should be validated in conjunction with other proxies.

  • 加载中
  • [1] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 1-51.

    Google Scholar

    [2] Brammer H, Ravenscroft P. Arsenic in groundwater: A threat to sustainable agriculture in South and South-East Asia[J]. Environment International, 2009, 35(3):647-654. doi: 10.1016/j.envint.2008.10.004

    CrossRef Google Scholar

    [3] Wang S L, Mulligan C N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution[J]. Science of the Total Environment, 2006, 366(2-3):701-721. doi: 10.1016/j.scitotenv.2005.09.005

    CrossRef Google Scholar

    [4] Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145. doi: 10.1126/science.1072375

    CrossRef Google Scholar

    [5] Tribovillard N. Arsenic in marine sediments: how robust a redox proxy?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550:109745. doi: 10.1016/j.palaeo.2020.109745

    CrossRef Google Scholar

    [6] Fendorf S, La Force M J, Li G C. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead[J]. Journal of Environmental Quality, 2004, 33(6):2049-2055. doi: 10.2134/jeq2004.2049

    CrossRef Google Scholar

    [7] Matschullat J. Arsenic in the geosphere: a review[J]. The Science of the Total Environment, 2000, 249(1-3):297-312. doi: 10.1016/S0048-9697(99)00524-0

    CrossRef Google Scholar

    [8] Kanel S R, Grenèche J M, Choi H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6):2045-2050.

    Google Scholar

    [9] Wang S L, Mulligan C N. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater[J]. Journal of Hazardous Materials, 2006, 138(3):459-470. doi: 10.1016/j.jhazmat.2006.09.048

    CrossRef Google Scholar

    [10] O’Day A, Vlassopoulos D, Root R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13703-13708.

    Google Scholar

    [11] Meng X G, Jing C Y, Korfiatis G P. A review of redox transformation of arsenic in aquatic environments[C]//Biogeochemistry of Environmentally Important Trace Elements. Washington D C: American Chemical Society, 2002: 70-83.

    Google Scholar

    [12] Wang P X. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4):5-39. doi: 10.1016/S0025-3227(98)00172-8

    CrossRef Google Scholar

    [13] Usami K, Ohi T, Hasegawa S, et al. Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160-15ka: Associations with insolation changes[J]. Marine Micropaleontology, 2013, 101:10-27. doi: 10.1016/j.marmicro.2013.03.006

    CrossRef Google Scholar

    [14] Seki A, Tada R, Kurokawa S, et al. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner[J]. Progress in Earth and Planetary Science, 2019, 6(1):1. doi: 10.1186/s40645-018-0244-z

    CrossRef Google Scholar

    [15] Dong Z, Shi X F, Zou J J, et al. Paleoceanographic insights on meridional ventilation variations in the Japan Sea since the Last Glacial Maximum: A radiolarian assemblage perspective[J]. Global and Planetary Change, 2021, 200:103456. doi: 10.1016/j.gloplacha.2021.103456

    CrossRef Google Scholar

    [16] 石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3):1-11

    Google Scholar

    SHI Xuefa, ZOU Jianjun, YAO Zhengquan, et al. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3):1-11.]

    Google Scholar

    [17] Menard H W, Smith S M. Hypsometry of ocean basin provinces[J]. Journal of Geophysical Research, 1966, 71(18):4305-4325. doi: 10.1029/JZ071i018p04305

    CrossRef Google Scholar

    [18] Oba T, Kato M, Kitazato H, et al. Paleoenvironmental changes in the Japan Sea during the last 85, 000 years[J]. Paleoceanography, 1991, 6(4):499-518. doi: 10.1029/91PA00560

    CrossRef Google Scholar

    [19] Kim K R, Kim G, Kim K, et al. A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea[J]. Geophysical Research Letters, 2002, 29(8):75-1-75-4.

    Google Scholar

    [20] Yanagi T. Water, salt, phosphorus and nitrogen budgets of the Japan Sea[J]. Journal of Oceanography, 2002, 58(6):797-804. doi: 10.1023/A:1022815027968

    CrossRef Google Scholar

    [21] Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2):Q02Q04.

    Google Scholar

    [22] Kim K, Chang K I, Kang D J, et al. Review of recent findings on the water masses and circulation in the East Sea (Sea of Japan)[J]. Journal of Oceanography, 2008, 64(5):721-735. doi: 10.1007/s10872-008-0061-x

    CrossRef Google Scholar

    [23] Gamo T, Horibe Y. Abyssal circulation in the Japan Sea[J]. Journal of the Oceanographical Society of Japan, 1983, 39(5):220-230. doi: 10.1007/BF02070392

    CrossRef Google Scholar

    [24] Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2):236-247. doi: 10.1029/1998PA900016

    CrossRef Google Scholar

    [25] Yang L H, Long H, Yi L, et al. Luminescence dating of marine sediments from the Sea of Japan using quartz OSL and polymineral pIRIR signals of fine grains[J]. Quaternary Geochronology, 2015, 30:257-263. doi: 10.1016/j.quageo.2015.05.003

    CrossRef Google Scholar

    [26] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3):690-703

    Google Scholar

    DOU Ruxi, ZOU Jianjun, SHI Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3):690-703.]

    Google Scholar

    [27] Dou R X, Zou J J, Shi X F, et al. Geochemical and isotopic evidence for provenance of the western sea of Japan over the last 30000 years[J]. Frontiers in Earth Science, 2021, 9:638178. doi: 10.3389/feart.2021.638178

    CrossRef Google Scholar

    [28] Dou R, Zou J J, Shi X F, et al. Provenance discrimination of siliciclastic sediments in the western sea of Japan over the past 30 kyr: Evidence from major, trace elements, and Pb isotopes[J]. Lithosphere, 2022, 2022:6045238.

    Google Scholar

    [29] 李日升, 郭跃安, 孙冬娥, 等. 化学蒸气发生-多通道原子荧光光谱法同时测定化探样品中的砷、锑、铋、汞[J]. 理化检验(化学分册), 2014, 50(5):569-571

    Google Scholar

    LI Risheng, GUO Yuean, SUN Donge, et al. Simultaneous determination of As, Sb, Bi and Hg in geological samples by HG-Multi-channel-AFS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(5):569-571.]

    Google Scholar

    [30] 朱爱美, 石学法, 邹建军, 等. 88ka以来冲绳海槽北部物源及沉积通量演化[J]. 海洋地质与第四纪地质, 2015, 35(5):1-8

    Google Scholar

    ZHU Aimei, SHI Xuefa, ZOU Jianjun, et al. Sediment provenance and fluxes in the northern Okinawa Trough during the last 88 ka[J]. Marine Geology & Quaternary Geology, 2015, 35(5):1-8.]

    Google Scholar

    [31] 邹建军, 宗娴, 朱爱美, 等. 37ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4):123-135

    Google Scholar

    ZOU Jianjun, ZONG Xian, ZHU Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4):123-135.]

    Google Scholar

    [32] Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China: Weathering features, anthropogenic impact and chemical fluxes[J]. Estuarine, Coastal and Shelf Science, 2002, 54(6):1051-1070. doi: 10.1006/ecss.2001.0879

    CrossRef Google Scholar

    [33] Woitke P, Wellmitz J, Helm D, et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube[J]. Chemosphere, 2003, 51(8):633-642. doi: 10.1016/S0045-6535(03)00217-0

    CrossRef Google Scholar

    [34] Conrad C F, Chisholm-Brause C J. Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia[J]. Marine Pollution Bulletin, 2004, 49(4):319-324. doi: 10.1016/j.marpolbul.2004.02.019

    CrossRef Google Scholar

    [35] Sutherland R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6):611-627. doi: 10.1007/s002540050473

    CrossRef Google Scholar

    [36] Reinhard C T, Planavsky N J, Robbins L J, et al. Proterozoic ocean redox and biogeochemical stasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14):5357-5362.

    Google Scholar

    [37] 彭俊文. 氧化还原敏感元素在海相沉积物中富集的其他控制因素: 海平面波动[J]. 中国科学: 地球科学, 2022, 52(11): 2254-2274

    Google Scholar

    PENG Junwen. What besides redox conditions? Impact of sea-level fluctuations on redox-sensitive trace-element enrichment patterns in marine sediments[J]. Science China Earth Sciences, 2022, 65(10): 1985-2004.]

    Google Scholar

    [38] Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E

    CrossRef Google Scholar

    [39] Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1-2):67-88. doi: 10.1016/0025-3227(93)90150-T

    CrossRef Google Scholar

    [40] 邹建军, 石学法, 刘焱光, 等. 末次冰期以来日本海陆源沉积的地球化学记录及其对海平面和气候变化的响应[J]. 海洋地质与第四纪地质, 2010, 30(2):75-86

    Google Scholar

    ZOU Jianjun, SHI Xuefa, LIU Yanguang, et al. Geochemical record of terrigenous sediments from the Sea of Japan since Last Glacial and its response to sea level and climate change[J]. Marine Geology & Quaternary Geology, 2010, 30(2):75-86.]

    Google Scholar

    [41] 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983, 18(4):307-314

    Google Scholar

    ZHAO Yiyang. Some Geochemical Patterns of Shelf Sediments of the China Seas[J]. Scientia Geologica Sinica, 1983, 18(4):307-314.]

    Google Scholar

    [42] 郭华明, 王焰新, 李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003, 24(4):60-67

    Google Scholar

    GUO Huaming, WANG Yanxin, LI Yongmin. Analysis of factors resulting in anomalous arsenic concentration in groundwaters of Shanyin, Shanxi province[J]. Environmental Science, 2003, 24(4):60-67.]

    Google Scholar

    [43] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q

    CrossRef Google Scholar

    [44] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4):1079-1092. doi: 10.5194/cp-12-1079-2016

    CrossRef Google Scholar

    [45] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326

    CrossRef Google Scholar

    [46] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591

    CrossRef Google Scholar

    [47] Tsujisaka M, Nishida S, Takano S, et al. Constraints on redox conditions in the Japan Sea in the last 47, 000 years based on Mo and W as palaeoceanographic proxies[J]. Geochemical Journal, 2020, 54(6):351-363. doi: 10.2343/geochemj.2.0606

    CrossRef Google Scholar

    [48] Ikehara K, Fujine K. Fluctuations in the late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9):866-872. doi: 10.1002/jqs.2573

    CrossRef Google Scholar

    [49] Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6):1214-1220. doi: 10.1016/j.jseaes.2010.08.010

    CrossRef Google Scholar

    [50] Nihashi S, Ohshima K I, Saitoh S I. Sea-ice production in the northern Japan Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 127:65-76. doi: 10.1016/j.dsr.2017.08.003

    CrossRef Google Scholar

    [51] Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):350-360. doi: 10.1016/j.palaeo.2009.06.022

    CrossRef Google Scholar

    [52] Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30ky: evidence from deep-dwelling radiolarians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(3-4):263-278. doi: 10.1016/j.palaeo.2004.03.010

    CrossRef Google Scholar

    [53] Domitsu H, Oda M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27, 000 years: Evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4):155-170. doi: 10.1016/j.marmicro.2006.06.006

    CrossRef Google Scholar

    [54] Dong Z, Shi X F, Zou J J, et al. Drastic hydrographic changes inferred from radiolarian assemblages in the central Japan Sea since the Last Glacial Maximum[J]. Marine Geology, 2020, 429:106295. doi: 10.1016/j.margeo.2020.106295

    CrossRef Google Scholar

    [55] Zou J J, Shi X F, Zhu A M, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432:106393. doi: 10.1016/j.margeo.2020.106393

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(7) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint