Citation: | WEI Jilin, LIU Hailong, ZHENG Weipeng, LIN Pengfei, ZHAO Yan. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 32-40. doi: 10.16562/j.cnki.0256-1492.2024060701 |
Since the Middle Miocene, the opening and closing of the Tethys and Panama seaways may have directly affected the intensity and spatial morphology of the Atlantic Meridional Overturning Current (AMOC). However, systematic studies on the connection between the two key mid- and low-latitude seaways and the AMOC are few. Based on the boundary conditions of the Middle Miocene, we conducted a Middle Miocene climate simulation experiment using a coupled climate model and a sensitivity experiment of the successive closure of the Tethys and Panama seaways. Results show that the openings of Tethys and Panama seaways provided "shortcuts" for tropical Indian and Pacific Ocean waters to enter the North Atlantic, respectively, and transported high-salinity and low-salinity seawater to the North Atlantic, respectively, which played opposite roles in the change of AMOC intensity. The opening of the Tethys Seaway enhanced the AMOC, which offset the weakening of the AMOC caused by the opening of the Panama Seaway. The closure of these two mid- and low-latitude seaways could cause a north-south asymmetric response of global sea surface temperature, and the dividing line was roughly located at the latitude of the Panama Seaway. This study showed that the modern spatial structure of AMOC could be formed only when the Tethys Seaway and the Panama Seaway were closed. Therefore, the closure time of these two mid- and low-latitude seaways is of great significance for studying the evolution of AMOC.
[1] | Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2):79-89. doi: 10.5670/oceanog.1991.07 |
[2] | Speich S, Blanke B, Madec G. Warm and cold water routes of an O. G. C. M. thermohaline conveyor belt[J]. Geophysical Research Letters, 2001, 28(2):311-314. doi: 10.1029/2000GL011748 |
[3] | Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037 |
[4] | Coxall H K, Huck C E, Huber M, et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation[J]. Nature Geoscience, 2018, 11(3):190-196. doi: 10.1038/s41561-018-0069-9 |
[5] | Hague A M, Thomas D J, Huber M, et al. Convection of North Pacific deep water during the early Cenozoic[J]. Geology, 2012, 40(6):527-530. doi: 10.1130/G32886.1 |
[6] | McKinley C C, Thomas D J, Levay L J, et al. Nd isotopic structure of the Pacific Ocean 40-10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma[J]. Earth and Planetary Science Letters, 2019, 521:139-149. doi: 10.1016/j.jpgl.2019.06.009 |
[7] | Thomas D J, Korty R, Huber M, et al. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world[J]. Paleoceanography, 2014, 29(5):454-469. doi: 10.1002/2013PA002535 |
[8] | Frigola A, Prange M, Schulz M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4):1607-1626. doi: 10.5194/gmd-11-1607-2018 |
[9] | Herold N, Seton M, Müller R D, et al. Middle Miocene tectonic boundary conditions for use in climate models[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10):Q10009. |
[10] | Steinthorsdottir M, Coxall H K, de Boer A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004037. doi: 10.1029/2020PA004037 |
[11] | Butzin M, Lohmann G, Bickert T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1):PA1203. |
[12] | Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18. |
[13] | Rögl F. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview)[J]. Geologica Carpathica, 1999, 50(4):339-349. |
[14] | Torfstein A, Steinberg J. The Oligo-Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea[J]. Scientific Reports, 2020, 10(1):13817. doi: 10.1038/s41598-020-70652-4 |
[15] | Hamon N, Sepulchre P, Lefebvre V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6):2687-2702. doi: 10.5194/cp-9-2687-2013 |
[16] | Frigola A, Prange M, Schulz M. A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579:110591. doi: 10.1016/j.palaeo.2021.110591 |
[17] | Herold N, Huber M, Müller R D. Modeling the miocene climatic optimum. Part I: land and atmosphere[J]. Journal of Climate, 2011, 24(24):6353-6372. doi: 10.1175/2011JCLI4035.1 |
[18] | Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5):376-381. doi: 10.1038/ngeo2119 |
[19] | Krapp M, Jungclaus J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4):1169-1188. doi: 10.5194/cp-7-1169-2011 |
[20] | Nisancioglu K H, Raymo M E, Stone P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1):1006. |
[21] | Steph S, Tiedemann R, Prange M, et al. Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway[J]. Paleoceanography, 2006, 21(4):PA4221. |
[22] | Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509 |
[23] | Kirillova V, Osborne A H, Störling T, et al. Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation[J]. Nature Communications, 2019, 10(1):4025. doi: 10.1038/s41467-019-12034-7 |
[24] | Li L J, Yu Y Q, Tang Y L, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9):e2019MS002012. doi: 10.1029/2019MS002012 |
[25] | Lin P F, Zhao B W, Wei J L, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10):1746-1765. doi: 10.1007/s00376-022-1439-1 |
[26] | Zheng W P, Yu Y Q, Luan Y H, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10):1034-1044. doi: 10.1007/s00376-020-9290-8 |
[27] | Li L J, Dong L, Xie J B, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15):e2020JD032574. doi: 10.1029/2020JD032574 |
[28] | Lin P F, Yu Z P, Liu H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3):239-249. doi: 10.1007/s00376-019-9208-5 |
[29] | Xie Z H, Wang L H, Wang Y, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12):e2020MS002339. doi: 10.1029/2020MS002339 |
[30] | Hunke E C, Lipscomb W H. CICE: the Los Alamos sea ice model documentation and software user's manual version 4.1 LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010. |
[31] | Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1):31-42. doi: 10.1177/1094342011428141 |
[32] | Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5):1937-1958. doi: 10.5194/gmd-9-1937-2016 |
[33] | Beerling D J, Fox A, Anderson C W. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves[J]. American Journal of Science, 2009, 309(9):775-787. doi: 10.2475/09.2009.01 |
[34] | Burls N J, Bradshaw C D, De Boer A M, et al. Simulating miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5):e2020PA004054. doi: 10.1029/2020PA004054 |
[35] | Ji S C, Nie J S, Lechler A, et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters, 2018, 499:134-144. doi: 10.1016/j.jpgl.2018.07.011 |
[36] | Steinthorsdottir M, Jardine P E, Rember W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1):e2020PA003900. doi: 10.1029/2020PA003900 |
[37] | Stoll H M, Guitian J, Hernandez-Almeida I, et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy[J]. Quaternary Science Reviews, 2019, 208:1-20. doi: 10.1016/j.quascirev.2019.01.012 |
[38] | Allen M B, Armstrong H A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):52-58. doi: 10.1016/j.palaeo.2008.04.021 |
[39] | Sun J M, Sheykh M, Ahmadi N, et al. Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 564:110172. doi: 10.1016/j.palaeo.2020.110172 |
[40] | Hüsing S K, Zachariasse W J, van Hinsbergen D J J, et al. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway[J]. Geological Society, London, Special Publications, 2009, 311(1):107-132. doi: 10.1144/SP311.4 |
[41] | Bialik O M, Frank M, Betzler C, et al. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean[J]. Scientific Reports, 2019, 9(1):8842. doi: 10.1038/s41598-019-45308-7 |
[42] | Brierley C M, Fedorov A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444:116-130. doi: 10.1016/j.jpgl.2016.03.010 |
[43] | Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates[J]. Progress in Oceanography, 2015, 132:174-196. doi: 10.1016/j.pocean.2014.02.004 |
[44] | Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9):2079-2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 |
[45] | de Vries P, Weber S L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation[J]. Geophysical Research Letters, 2005, 32(9):L09606. |
[46] | Deshayes J, Curry R, Msadek R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic[J]. Journal of Climate, 2014, 27(9):3298-3317. doi: 10.1175/JCLI-D-12-00700.1 |
[47] | Jüling A, Zhang X, Castellana D, et al. The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans[J]. Ocean Science, 2021, 17(3):729-754. doi: 10.5194/os-17-729-2021 |
The global thermohaline circulation[3]
The topography in the MMCO
The simulated Atlantic Meridional Overturning Circulation in each experiment
The profiles of the upper
The annual mean sea surface temperature and sea surface salinity differences