2024 Vol. 44, No. 4
Article Contents

LIANG Chengde, HAN Tao, ZHAO Nanyu, WEN Hanfeng, WANG Guozhen, LIU Chengcheng, YANG Haotian, GENG Jun, YAN Hong. Variation and influencing factors of δ13C and δ18O in the inner and outer layers of modern Tridacna squamosa from the Xisha Islands, South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 41-53. doi: 10.16562/j.cnki.0256-1492.2024012501
Citation: LIANG Chengde, HAN Tao, ZHAO Nanyu, WEN Hanfeng, WANG Guozhen, LIU Chengcheng, YANG Haotian, GENG Jun, YAN Hong. Variation and influencing factors of δ13C and δ18O in the inner and outer layers of modern Tridacna squamosa from the Xisha Islands, South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 41-53. doi: 10.16562/j.cnki.0256-1492.2024012501

Variation and influencing factors of δ13C and δ18O in the inner and outer layers of modern Tridacna squamosa from the Xisha Islands, South China Sea

More Information
  • Tridacna shells, known for their distinct growth bands, serve as excellent proxies for recording tropical marine climate changes. The δ18O and δ13C in Tridacna shells have been applied in the Quaternary paleoclimate research. However, most previous researches focused on the inner layer, while the outer layer received less attention. We conducted a comprehensive analysis at a monthly resolution δ18O, δ13C tests on both the inner and outer layers, as well as daily growth band scans on the inner layer of modern Tridacna squamosa from the Xisha Islands in the South China Sea. Results reveal that the outer layer exhibited higher δ18O values than the inner layer. In addition, both shells displayed similar variation patterns, being primarily influenced by sea surface temperature (SST), and indicating that the δ18O of the outer layer could reliably indicate climate and environmental changes. In contrast, significant differences in δ13C value were observed between the inner and outer layers. The inner layer displayed a noticeable annual cycle in δ13C value. By comparing the inner layer δ13C, climatic and environmental parameters, and daily growth rate (DGR), we determined that the seasonal variations in inner layer δ13C were linked to the primary productivity and the life activities of Tridacna. Meanwhile, the δ13C of the outer layer, which is relatively negative compared to the inner layer, exhibited a continuous downward trend without seasonal changes. This discrepancy may be attributed to the sampling path deviating from the maximum growth axis.

  • 加载中
  • [1] Bonham K. Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography[J]. Science, 1965, 149(3681):300-302. doi: 10.1126/science.149.3681.300

    CrossRef Google Scholar

    [2] Rosewater J. The family tridacnidae in the Indo-Pacific[J]. Indo-Pacific Mollusca, 1965, 1:347-396.

    Google Scholar

    [3] Neo M L, Eckman W, Vicentuan K, et al. The ecological significance of giant clams in coral reef ecosystems[J]. Biological Conservation, 2015, 181:111-123. doi: 10.1016/j.biocon.2014.11.004

    CrossRef Google Scholar

    [4] Watanabe T, Suzuki A, Kawahata H, et al. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4):343-354. doi: 10.1016/S0031-0182(04)00358-X

    CrossRef Google Scholar

    [5] Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potential applications in paleoclimate studies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):132-142. doi: 10.1016/j.palaeo.2009.06.007

    CrossRef Google Scholar

    [6] Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: a new high-resolution SST proxy[J]. Geochimica et Cosmochimica Acta, 2013, 112:52-65. doi: 10.1016/j.gca.2013.03.007

    CrossRef Google Scholar

    [7] Ayling B F, Chappell J, Gagan M K, et al. ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea[J]. Earth and Planetary Science Letters, 2015, 431:236-246. doi: 10.1016/j.jpgl.2015.09.037

    CrossRef Google Scholar

    [8] Gannon M E, Pérez-Huerta A, Aharon P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas[J]. Coral Reefs, 2017, 36(2):503-517. doi: 10.1007/s00338-016-1538-5

    CrossRef Google Scholar

    [9] Yan H. Daily growth bands of giant clam shell: a potential paleoweather recorder[J]. Solid Earth Sciences, 2020, 5(4):249-253. doi: 10.1016/j.sesci.2020.10.001

    CrossRef Google Scholar

    [10] Yan H, Liu C C, An Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13):7038-7043.

    Google Scholar

    [11] Lin A Y M, Meyers M A, Vecchio K S. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: a comparative study[J]. Materials Science and Engineering: C, 2006, 26(8):1380-1389. doi: 10.1016/j.msec.2005.08.016

    CrossRef Google Scholar

    [12] Norton J H, Jones G W. The Giant Clam: An Anatomical and Histological Atlas[M]. Canberra, Australia: Australian Centre for International Agricultural Research, 1992.

    Google Scholar

    [13] Aharon P. Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae[J]. Coral Reefs, 1991, 10(2):71-90. doi: 10.1007/BF00571826

    CrossRef Google Scholar

    [14] Sano Y, Kobayashi S, Shirai K, et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells[J]. Nature Communications, 2012, 3(1):761. doi: 10.1038/ncomms1763

    CrossRef Google Scholar

    [15] Aharon P. 140, 000-yr isotope climatic record from raised coral reefs in New Guinea[J]. Nature, 1983, 304(5928):720-723. doi: 10.1038/304720a0

    CrossRef Google Scholar

    [16] Grossman E L, Ku T L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects[J]. Chemical Geology: Isotope Geoscience section, 1986, 59:59-74. doi: 10.1016/0168-9622(86)90057-6

    CrossRef Google Scholar

    [17] Watanabe T, Oba T. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9):20667-20674. doi: 10.1029/1999JC900097

    CrossRef Google Scholar

    [18] Aubert A, Lazareth C E, Cabioch G, et al. The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles[J]. Coral Reefs, 2009, 28(4):989-998. doi: 10.1007/s00338-009-0538-0

    CrossRef Google Scholar

    [19] Duprey N, Lazareth C E, Dupouy C, et al. Calibration of seawater temperature and δ 18Oseawater signals in Tridacna maxima’s δ 18Oshell record based on in situ data[J]. Coral Reefs, 2015, 34(2):437-450. doi: 10.1007/s00338-014-1245-z

    CrossRef Google Scholar

    [20] Wang G Z, Yan H, Liu C C, et al. Oxygen isotope temperature calibrations for modern Tridacna shells in western Pacific[J]. Coral Reefs, 2022, 41(1):113-130. doi: 10.1007/s00338-021-02208-5

    CrossRef Google Scholar

    [21] Pätzold J, Heinrichs J P, Wolschendorf K, et al. Correlation of stable oxygen isotope temperature record with light attenuation profiles in reef-dwelling Tridacna shells[J]. Coral Reefs, 1991, 10(2):65-69. doi: 10.1007/BF00571825

    CrossRef Google Scholar

    [22] Killam D, Thomas R, Al‐Najjar T, et al. Interspecific and intrashell stable isotope variation among the red sea giant clams[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(7):e2019GC008669. doi: 10.1029/2019GC008669

    CrossRef Google Scholar

    [23] Jones D S, Williams D F, Romanek C S. Life history of symbiont-bearing giant clams from stable isotope profiles[J]. Science, 1986, 231(4733):46-48. doi: 10.1126/science.231.4733.46

    CrossRef Google Scholar

    [24] Yamanashi J, Takayanagi H, Isaji A, et al. Carbon and oxygen isotope records from Tridacna derasa shells: toward establishing a reliable proxy for sea surface environments[J]. PLoS One, 2016, 11(6):e0157659. doi: 10.1371/journal.pone.0157659

    CrossRef Google Scholar

    [25] Arias-Ruiz C, Elliot M, Bézos A, et al. Geochemical fingerprints of climate variation and the extreme La Niña 2010–11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487:216-228. doi: 10.1016/j.palaeo.2017.08.037

    CrossRef Google Scholar

    [26] Yang Z K, Shao D, Mei Y J, et al. The controlling mechanism of mid- to late Holocene carbon isotopic variations of Tridacnidae in the South China Sea[J]. Marine Geology, 2019, 415:105958. doi: 10.1016/j.margeo.2019.06.003

    CrossRef Google Scholar

    [27] Romanek C S, Jones D S, Williams D F, et al. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima[J]. Marine Biology, 1987, 94(3):385-393. doi: 10.1007/BF00428244

    CrossRef Google Scholar

    [28] Suess H E. Natural radiocarbon and the rate of exchange of carbon dioxide be-tween the atmosphere and the sea[J]. Nuclear Processes in Geologic Settings, 1953, 43:52-56.

    Google Scholar

    [29] Keeling C D. The Suess effect: 13Carbon-14Carbon interrelations[J]. Environment International, 1979, 2(4-6):229-300. doi: 10.1016/0160-4120(79)90005-9

    CrossRef Google Scholar

    [30] Swart P K, Greer L, Rosenheim B E, et al. The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans[J]. Geophysical Research Letters, 2010, 37(5):L05604.

    Google Scholar

    [31] Deng W F, Chen X F, Wei G J, et al. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect[J]. Paleoceanography, 2017, 32(2):161-171. doi: 10.1002/2016PA003049

    CrossRef Google Scholar

    [32] Dassié E P, Lemley G M, Linsley B K. The Suess effect in Fiji coral δ13C and its potential as a tracer of anthropogenic CO2 uptake[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370:30-40. doi: 10.1016/j.palaeo.2012.11.012

    CrossRef Google Scholar

    [33] Yan H, Soon W, Wang Y H. A composite sea surface temperature record of the northern South China Sea for the past 2500years: a unique look into seasonality and seasonal climate changes during warm and cold periods[J]. Earth-Science Reviews, 2015, 141:122-135. doi: 10.1016/j.earscirev.2014.12.003

    CrossRef Google Scholar

    [34] Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis: a novel methodological approach towards improved sclerochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465:362-375. doi: 10.1016/j.palaeo.2016.03.019

    CrossRef Google Scholar

    [35] Agbaje O B A, Thomas D E, Dominguez J G, et al. Biomacromolecules in bivalve shells with crossed lamellar architecture[J]. Journal of Materials Science, 2019, 54(6):4952-4969. doi: 10.1007/s10853-018-3165-8

    CrossRef Google Scholar

    [36] Zhao N Y, Yan H, Yang Y J, et al. A 23.7-year long daily growth rate record of a modern giant clam shell from South China Sea and its potential in high-resolution paleoclimate reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583:110682. doi: 10.1016/j.palaeo.2021.110682

    CrossRef Google Scholar

    [37] Zhao N Y, Yan H, Luo F, et al. Daily growth rate variation in Tridacna shells as a record of tropical cyclones in the South China Sea: palaeoecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111444. doi: 10.1016/j.palaeo.2023.111444

    CrossRef Google Scholar

    [38] Warter V, Erez J, Müller W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496:32-47. doi: 10.1016/j.palaeo.2017.12.038

    CrossRef Google Scholar

    [39] Aharon P, Chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(3-4):337-379. doi: 10.1016/0031-0182(86)90101-X

    CrossRef Google Scholar

    [40] 洪阿实, 洪鹰, 王庆春, 等. 1994年夏季南海东北部海水氧同位素分布特征[J]. 热带海洋, 1997, 16(2):82-90

    Google Scholar

    HONG Ashi, HONG Ying, WANG Qingchun, et al. Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994[J]. Tropic Oceanology, 1997, 16(2):82-90.]

    Google Scholar

    [41] Yan H, Shao D, Wang Y H, et al. Sr/Ca differences within and among three Tridacnidae species from the South China Sea: implication for paleoclimate reconstruction[J]. Chemical Geology, 2014, 390:22-31. doi: 10.1016/j.chemgeo.2014.10.011

    CrossRef Google Scholar

    [42] Romanek C S, Grossman E L. Stable isotope profiles of Tridacna maxima as environmental indicators[J]. Palaios, 1989, 4(5):402-413. doi: 10.2307/3514585

    CrossRef Google Scholar

    [43] 文汉锋, 赵楠钰, 刘成程, 等. 西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化[J]. 海洋地质与第四纪地质, 2021, 41(1):1-13

    Google Scholar

    WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, et al. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1):1-13.]

    Google Scholar

    [44] Trofimova T, Milano S, Andersson C, et al. Oxygen isotope composition of Arctica islandica aragonite in the context of shell architectural organization: implications for paleoclimate reconstructions[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2):453-470. doi: 10.1002/2017GC007239

    CrossRef Google Scholar

    [45] Cusack M, Parkinson D, Freer A, et al. Oxygen isotope composition in Modiolus modiolus aragonite in the context of biological and crystallographic control[J]. Mineralogical Magazine, 2008, 72(2):569-577. doi: 10.1180/minmag.2008.072.2.569

    CrossRef Google Scholar

    [46] 殷建平, 王友绍, 徐继荣, 等. 海洋碳循环研究进展[J]. 生态学报, 2006, 26(2):566-575 doi: 10.3321/j.issn:1000-0933.2006.02.033

    CrossRef Google Scholar

    YIN Jianping, WANG Youshao, XU Jirong, et al. Adavances of studies on marine carbon cycle[J]. Acta Ecologica Sinica, 2006, 26(2):566-575.] doi: 10.3321/j.issn:1000-0933.2006.02.033

    CrossRef Google Scholar

    [47] McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns[J]. Geochimica et Cosmochimica Acta, 1989, 53(1):151-162. doi: 10.1016/0016-7037(89)90282-2

    CrossRef Google Scholar

    [48] McConnaughey T A, Burdett J, Whelan J F, et al. Carbon isotopes in biological carbonates: respiration and photosynthesis[J]. Geochimica et Cosmochimica Acta, 1997, 61(3):611-622. doi: 10.1016/S0016-7037(96)00361-4

    CrossRef Google Scholar

    [49] Lorrain A, Paulet Y M, Chauvaud L, et al. δ13C variation in scallop shells: increasing metabolic carbon contribution with body size?[J]. Geochimica et Cosmochimica Acta, 2004, 68(17):3509-3519. doi: 10.1016/j.gca.2004.01.025

    CrossRef Google Scholar

    [50] Ma X L, Yan H, Ma W T, et al. Symbiotic zooxanthellae drive the δ13C changes of Tridacna gigas shell in the southern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(6):e2022JG007337. doi: 10.1029/2022JG007337

    CrossRef Google Scholar

    [51] Klein R T, Lohmann K C, Thayer C W. SrCa and 13C12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(21):4207-4221. doi: 10.1016/S0016-7037(96)00232-3

    CrossRef Google Scholar

    [52] McConnaughey T A, Gillikin D P. Carbon isotopes in mollusk shell carbonates[J]. Geo-Marine Letters, 2008, 28(5-6):287-299. doi: 10.1007/s00367-008-0116-4

    CrossRef Google Scholar

    [53] McConnaughey T A. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models[J]. Coral Reefs, 2003, 22(4):316-327. doi: 10.1007/s00338-003-0325-2

    CrossRef Google Scholar

    [54] Chauvaud L, Lorrain A, Dunbar R B, et al. Shell of the great scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(8):Q08001.

    Google Scholar

    [55] Grottoli A G, Wellington G M. Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea[J]. Coral Reefs, 1999, 18(1):29-41. doi: 10.1007/s003380050150

    CrossRef Google Scholar

    [56] Gillikin D P, Lorrain A, Meng L, et al. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):2936-2946. doi: 10.1016/j.gca.2007.04.003

    CrossRef Google Scholar

    [57] Heikoop J M, Dunn J J, Risk M J, et al. Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons[J]. Geochimica et Cosmochimica Acta, 2000, 64(6):975-987. doi: 10.1016/S0016-7037(99)00363-4

    CrossRef Google Scholar

    [58] Soo P, Todd P A. The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)[J]. Marine Biology, 2014, 161(12):2699-2717. doi: 10.1007/s00227-014-2545-0

    CrossRef Google Scholar

    [59] SWart P K. Carbon and oxygen isotope fractionation in scleractinian corals: a review[J]. Earth-Science Reviews, 1983, 19(1):51-80. doi: 10.1016/0012-8252(83)90076-4

    CrossRef Google Scholar

    [60] Lucas J S, Nash W J, Crawford C M, et al. Environmental influences on growth and survival during the ocean-nursery rearing of giant clams, Tridacna gigas (L. )[J]. Aquaculture, 1989, 80(1-2):45-61. doi: 10.1016/0044-8486(89)90272-X

    CrossRef Google Scholar

    [61] Jantzen C, Wild C, El-Zibdah M, et al. Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea[J]. Marine Biology, 2008, 155(2):211-221. doi: 10.1007/s00227-008-1019-7

    CrossRef Google Scholar

    [62] Rossbach S, Saderne V, Anton A, et al. Light-dependent calcification in Red Sea giant clam Tridacna maxima[J]. Biogeosciences, 2019, 16(13):2635-2650. doi: 10.5194/bg-16-2635-2019

    CrossRef Google Scholar

    [63] Blidberg E, Elfwing T, Plantman P, et al. Water temperature influences on physiological behaviour in three species of giant clams (Tridacnidae)[C]//Proceedings of the 9th International Coral Reef Symposium. Bali, 2000.

    Google Scholar

    [64] Elfwing T, Plantman P, Tedengren M, et al. Responses to temperature, heavy metal and sediment stress by the giant clam Tridacna squamosa[J]. Marine and Freshwater Behaviour and Physiology, 2001, 34(4):239-248. doi: 10.1080/10236240109379077

    CrossRef Google Scholar

    [65] Huang C Y, Wu S F, Zhao M X, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J]. Marine Micropaleontology, 1997, 32(1-2):71-94. doi: 10.1016/S0377-8398(97)00014-5

    CrossRef Google Scholar

    [66] Liu Y, Liu W G, Peng Z C, et al. Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(5):1264-1272. doi: 10.1016/j.gca.2008.11.034

    CrossRef Google Scholar

    [67] Guo Y R, Deng W F, Wei G J, et al. Exploring the temperature dependence of clumped isotopes in modern Porites corals[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1):e2019JG005402. doi: 10.1029/2019JG005402

    CrossRef Google Scholar

    [68] Linsley B K, Messier R G, Dunbar R B. Assessing between-colony oxygen isotope variability in the coral Porites lobata at clipperton atoll[J]. Coral Reefs, 1999, 18(1):13-27. doi: 10.1007/s003380050148

    CrossRef Google Scholar

    [69] Böhm F, Joachimski M M, Lehnert H, et al. Carbon isotope records from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC[J]. Earth and Planetary Science Letters, 1996, 139(1-2):291-303. doi: 10.1016/0012-821X(96)00006-4

    CrossRef Google Scholar

    [70] 陈法锦, 陈建芳, 金海燕, 等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345

    Google Scholar

    CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing paleo-environment[J]. Acta Sedimentologica Sinica, 2012, 30(2):340-345.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(392) PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint