2024 Vol. 44, No. 4
Article Contents

HU Jianxiong, HUANG Enqing, TIAN Jun. Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 16-31. doi: 10.16562/j.cnki.0256-1492.2024062802
Citation: HU Jianxiong, HUANG Enqing, TIAN Jun. Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 16-31. doi: 10.16562/j.cnki.0256-1492.2024062802

Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms

More Information
  • The closure of the Indonesian Seaway played a key role in the evolution of the Indo-Pacific Warm Pool and associated atmospheric circulation during the Cenozoic. However, the relationship between the closure of the seaway, the evolution of the warm pool, and the shift in atmospheric circulation remains unclear due to poor constraints in tectonic and paleoenvironmental reconstructions. This study reviews the historical literature, including evidence from pollen records, coal deposits, shallow marine carbonate deposits, and biogeographic evolution. The results show that the hydroclimate in Southeast Asia underwent significant changes during the Oligo-Miocene transition, shifting from relatively dry conditions in the Oligocene to persistently wet conditions throughout the Miocene. Combined with recent simulation studies, it was concluded that the hydrological changes in Southeast Asia were influenced by both global and regional factors. The narrowing and closure of the seaway may have increased the gradient between the east-west thermocline depth and the east-west sea surface temperature in the Pacific Ocean, limiting the exchange of subsurface water between the Pacific and Indian Oceans. This in turn led to a strengthening of the Walker Circulation, which subsequently induced hydrological changes in Southeast Asia after the Oligo-Miocene boundary and mitigated the effects of global cooling over the Late Miocene. Uncertainties remain in current studies, and more geological records and simulation studies in the future would help to accurately characterize the relationship between seaway closure, warm pool evolution, and atmospheric circulation in the Oligo–Miocene.

  • 加载中
  • [1] De Deckker P. The Indo-Pacific Warm Pool: critical to world oceanography and world climate[J]. Geoscience Letters, 2016, 3(1):20. doi: 10.1186/s40562-016-0054-3

    CrossRef Google Scholar

    [2] Webster P J. The role of hydrological processes in ocean‐atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4):427-476. doi: 10.1029/94RG01873

    CrossRef Google Scholar

    [3] Oppo D W, Rosenthal Y. The great Indo-Pacific communicator[J]. Science, 2010, 328(5985):1492-1494. doi: 10.1126/science.1187273

    CrossRef Google Scholar

    [4] Rodgers K B, Latif M, Legutke S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow[J]. Geophysical Research Letters, 2000, 27(18):2941-2944. doi: 10.1029/1999GL002372

    CrossRef Google Scholar

    [5] Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500

    CrossRef Google Scholar

    [6] Karas C, Nürnberg D, Gupta A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6):434-438. doi: 10.1038/ngeo520

    CrossRef Google Scholar

    [7] Karas C, Nürnberg D, Tiedemann R, et al. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways[J]. Earth and Planetary Science Letters, 2011, 301(1-2):117-124. doi: 10.1016/j.jpgl.2010.10.028

    CrossRef Google Scholar

    [8] Bali H, Gupta A K, Mohan K, et al. Evolution of the oligotrophic West Pacific Warm Pool during the Pliocene‐Pleistocene boundary[J]. Paleoceanography and Paleoclimatology, 2020, 35(11):e2020PA003875. doi: 10.1029/2020PA003875

    CrossRef Google Scholar

    [9] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353-431. doi: 10.1016/S1367-9120(01)00069-4

    CrossRef Google Scholar

    [10] Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian Throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 299-320.

    Google Scholar

    [11] Li Q Y, Jian Z M, Su X. Late Oligocene rapid transformations in the South China Sea[J]. Marine Micropaleontology, 2005, 54(1-2):5-25. doi: 10.1016/j.marmicro.2004.09.008

    CrossRef Google Scholar

    [12] Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1):87-140. doi: 10.1029/PA004i001p00087

    CrossRef Google Scholar

    [13] Von Der Heydt A S, Dijkstra H A. The impact of ocean gateways on ENSO variability in the Miocene[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 305-318.

    Google Scholar

    [14] Li Q Y, Li B H, Zhong G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4):465-482. doi: 10.1016/j.palaeo.2005.12.019

    CrossRef Google Scholar

    [15] Jian Z M, Yu Y Q, Li B H, et al. Phased evolution of the south–north hydrographic gradient in the South China Sea since the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230(3-4):251-263. doi: 10.1016/j.palaeo.2005.07.018

    CrossRef Google Scholar

    [16] Nathan S A, Leckie R M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3-4):140-159. doi: 10.1016/j.palaeo.2009.01.007

    CrossRef Google Scholar

    [17] Gourlan A T, Meynadier L, Allègre C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1-2):353-364. doi: 10.1016/j.jpgl.2007.11.054

    CrossRef Google Scholar

    [18] Sosdian S M, Lear C H. Initiation of the western Pacific warm pool at the middle Miocene climate transition?[J]. Paleoceanography and Paleoclimatology, 2020, 35(12):e2020PA003920. doi: 10.1029/2020PA003920

    CrossRef Google Scholar

    [19] Sato K, Oda M, Chiyonobu S, et al. Establishment of the western Pacific warm pool during the Pliocene: evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):140-147. doi: 10.1016/j.palaeo.2008.05.003

    CrossRef Google Scholar

    [20] Auer G, De Vleeschouwer D, Smith R A, et al. Timing and pacing of Indonesian Throughflow restriction and its connection to Late Pliocene Climate Shifts[J]. Paleoceanography and Paleoclimatology, 2019, 34(4):635-657. doi: 10.1029/2018PA003512

    CrossRef Google Scholar

    [21] 周祖翼, 金性春, 王嘹亮, 等. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰[J]. 海洋地质与第四纪地质, 2004, 24(1):7-14

    Google Scholar

    ZHOU Zuyi, JIN Xinchun, WANG Liaoliang, et al. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the western Pacific warm pool[J]. Marine Geology & Quaternary Geology, 2004, 24(1):7-14.]

    Google Scholar

    [22] Bayon G, Patriat M, Godderis Y, et al. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling[J]. Science Advances, 2023, 9(13):eadf3141. doi: 10.1126/sciadv.adf3141

    CrossRef Google Scholar

    [23] Tan N, Li H, Zhang Z S, et al. Closure of tropical seaways favors the climate and vegetation in tropical Africa and South America approaching their present conditions[J]. Global and Planetary Change, 2024, 233:104351. doi: 10.1016/j.gloplacha.2023.104351

    CrossRef Google Scholar

    [24] Brierley C M, Fedorov A V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution[J]. Paleoceanography, 2010, 25(2):PA2214.

    Google Scholar

    [25] Fedorov A V, Burls N J, Lawrence K T, et al. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years[J]. Nature Geoscience, 2015, 8(12):975-980. doi: 10.1038/ngeo2577

    CrossRef Google Scholar

    [26] Su Q D, Nie J S, Meng Q Q, et al. Central Asian drying at 3.3 Ma linked to tropical forcing?[J]. Geophysical Research Letters, 2019, 46(17-18):10561-10567. doi: 10.1029/2019GL084648

    CrossRef Google Scholar

    [27] 谭宁, 张仲石, 郭正堂, 等. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5):310-321

    Google Scholar

    TAN Ning, ZHANG Zhongshi, GUO Zhengtang, et al. Modeling study of the impact of tropical seaway changes on East Asian climate[J]. Earth Science Frontiers, 2022, 29(5):310-321.]

    Google Scholar

    [28] Krebs U, Park W, Schneider B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1-2):111-117. doi: 10.1016/j.palaeo.2011.06.002

    CrossRef Google Scholar

    [29] Christensen B A, Renema W, Henderiks J, et al. Indonesian throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13):6914-6925. doi: 10.1002/2017GL072977

    CrossRef Google Scholar

    [30] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853

    CrossRef Google Scholar

    [31] The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675):eadi5177.

    Google Scholar

    [32] Rohling E J, Yu J M, Heslop D, et al. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years[J]. Science Advances, 2021, 7(26):eabf5326. doi: 10.1126/sciadv.abf5326

    CrossRef Google Scholar

    [33] Auderset A, Moretti S, Taphorn B, et al. Enhanced ocean oxygenation during Cenozoic warm periods[J]. Nature, 2022, 609(7925):77-82. doi: 10.1038/s41586-022-05017-0

    CrossRef Google Scholar

    [34] Hall R. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41. doi: 10.1016/j.tecto.2012.04.021

    CrossRef Google Scholar

    [35] Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4):177-203. doi: 10.1016/j.earscirev.2007.04.004

    CrossRef Google Scholar

    [36] Hall R. Australia–SE Asia collision: plate tectonics and crustal flow[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 75-109.

    Google Scholar

    [37] Petrick B, Martínez-García A, Auer G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9(1):16995. doi: 10.1038/s41598-019-53382-0

    CrossRef Google Scholar

    [38] Gallagher S J, Auer G, Brierley C M, et al. Cenozoic history of the Indonesian gateway[J]. Annual Review of Earth and Planetary Sciences, 2024, 52:581-604. doi: 10.1146/annurev-earth-040722-111322

    CrossRef Google Scholar

    [39] Morley R J, Morley H P, Restrepo-Pace P. Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived Mid Tertiary climate changes[C]//Proceedings of the 29th Annual Convention Proceedings. AAPG, 2003: 1-24.

    Google Scholar

    [40] Morley R J, Morley H P. Neogene climate history of the Makassar Straits, with emphasis on the Attaka Region, East Kalimantan, Indonesia[C]//Proceedings of the 34th Annual Convention Proceedings. AAPG, 2010.

    Google Scholar

    [41] Lelono E B, Morley R J. Oligocene palynological zonation scheme from East Java Sea[J]. Scientific Contributions Oil & Gas, 2011, 34(2):95-104.

    Google Scholar

    [42] Morley R J, Dung B V, Tung N T, et al. High-resolution Palaeogene sequence stratigraphic framework for the Cuu Long Basin, offshore Vietnam, driven by climate change and tectonics, established from sequence biostratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 530:113-135. doi: 10.1016/j.palaeo.2019.05.010

    CrossRef Google Scholar

    [43] Morley R J, Hasan S S, Morley H P, et al. Sequence biostratigraphic framework for the Oligocene to Pliocene of Malaysia: high-frequency depositional cycles driven by polar glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561:110058. doi: 10.1016/j.palaeo.2020.110058

    CrossRef Google Scholar

    [44] Davis R C, Noon S W, Harrington J. The petroleum potential of Tertiary coals from Western Indonesia: relationship to mire type and sequence stratigraphic setting[J]. International Journal of Coal Geology, 2007, 70(1-3):35-52. doi: 10.1016/j.coal.2006.02.008

    CrossRef Google Scholar

    [45] Friederich M C, Moore T A, Flores R M. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: why does Indonesia have such extensive coal deposits?[J]. International Journal of Coal Geology, 2016, 166:2-35. doi: 10.1016/j.coal.2016.06.013

    CrossRef Google Scholar

    [46] Skeels A, Boschman L M, Mcfadden I R, et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line[J]. Science, 2023, 381(6653):86-92. doi: 10.1126/science.adf7122

    CrossRef Google Scholar

    [47] Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3-4):262-274. doi: 10.1016/j.palaeo.2008.05.012

    CrossRef Google Scholar

    [48] Martin C, Bentaleb I, Antoine P O. Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(1-2):19-29. doi: 10.1016/j.palaeo.2011.07.010

    CrossRef Google Scholar

    [49] Barbolini N, Woutersen A, Dupont-Nivet G, et al. Cenozoic evolution of the steppe-desert biome in Central Asia[J]. Science Advances, 2020, 6(41):eabb8227. doi: 10.1126/sciadv.abb8227

    CrossRef Google Scholar

    [50] Jia Y X, Wu H B, Zhu S Y, et al. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557:109907. doi: 10.1016/j.palaeo.2020.109907

    CrossRef Google Scholar

    [51] Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2

    CrossRef Google Scholar

    [52] Krawielicki J. Coupled climate, ecosystem and landscape development in the Afro-Mediterranean region since the Oligocene[D]. Doctor Dissertation of ETH Zürich, 2019.

    Google Scholar

    [53] Groeneveld J, Henderiks J, Renema W, et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies[J]. Science Advances, 2017, 3(5):e1602567. doi: 10.1126/sciadv.1602567

    CrossRef Google Scholar

    [54] Sia S G, Abdullah W H, Konjing Z, et al. The age, palaeoclimate, palaeovegetation, coal seam architecture/mire types, paleodepositional environments and thermal maturity of syn-collision paralic coal from Mukah, Sarawak, Malaysia[J]. Journal of Asian Earth Sciences, 2014, 81:1-19. doi: 10.1016/j.jseaes.2013.11.014

    CrossRef Google Scholar

    [55] Sia S G, Abdullah W H, Konjing Z, et al. Floristic and climatic changes at the Balingian Province of the Sarawak Basin, Malaysia, in response to Neogene global cooling, aridification and grassland expansion[J]. CATENA, 2019, 173:445-455. doi: 10.1016/j.catena.2018.10.044

    CrossRef Google Scholar

    [56] Konjing Z, Abd Rahman A H, Ismail M S, et al. Late Oligocene-Early Miocene palynological succession from marginal marine deposits, Nyalau Formation, Bintulu Sarawak: palynostratigraphy, paleovegetation and paleoclimate significance[J]. Bulletin of the Geological Society of Malaysia, 2022, 74:17-41. doi: 10.7186/bgsm74202202

    CrossRef Google Scholar

    [57] Lelono E B. Pollen records from the Oligocene of western Indonesia as the evidences of climate changes[J]. Scientific Contributions Oil & Gas, 2017, 40(3):107-115.

    Google Scholar

    [58] Bao X J, Hu Y Y, Scotese C R, et al. Quantifying climate conditions for the formation of coals and evaporites[J]. National Science Review, 2023, 10(6):nwad051. doi: 10.1093/nsr/nwad051

    CrossRef Google Scholar

    [59] Flores R M. Origin of coal as gas source and reservoir rocks[M]//Flores R M. Coal and Coalbed Gas. Amsterdam: Elsevier, 2014: 97-165.

    Google Scholar

    [60] 陈槐, 吴宁, 王艳芬, 等. 泥炭沼泽湿地研究的若干基本问题与研究简史[J]. 中国科学: 地球科学, 2021, 51(1):15-26 doi: 10.1360/SSTe-2020-0073

    CrossRef Google Scholar

    CHEN Huai, WU Ning, WANG Yanfen, et al. A historical overview about basic issues and studies of mires[J]. Scientia Sinica Terrae, 2021, 51(1):15-26.] doi: 10.1360/SSTe-2020-0073

    CrossRef Google Scholar

    [61] Stock A T, Littke R, Lücke A, et al. Miocene depositional environment and climate in western Europe: the lignite deposits of the Lower Rhine Basin, Germany[J]. International Journal of Coal Geology, 2016, 157:2-18. doi: 10.1016/j.coal.2015.06.009

    CrossRef Google Scholar

    [62] Guo Q L, Littke R, Zieger L. Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia[J]. International Journal of Coal Geology, 2018, 191:66-79. doi: 10.1016/j.coal.2018.03.008

    CrossRef Google Scholar

    [63] Petersen H I, Andersen C, Anh P H, et al. Petroleum potential of Oligocene lacustrine mudstones and coals at Dong Ho, Vietnam: an outcrop analogue to terrestrial source rocks in the greater Song Hong Basin[J]. Journal of Asian Earth Sciences, 2001, 19(1-2):135-154. doi: 10.1016/S1367-9120(00)00022-5

    CrossRef Google Scholar

    [64] Susilawati R. Minerals and inorganic matter in coals of the Bukit Asam Coalfield, South Sumatra Basin, Indonesia[D]. Master Dissertation of University of New South Wales, 2004.

    Google Scholar

    [65] Petersen H I, Foopatthanakamol A, Ratanasthien B. Petroleum potential, thermal maturity and the oil window of oil shales and coals in Cenozoic rift basins, central and Northern Thailand[J]. Journal of Petroleum Geology, 2006, 29(4):337-360. doi: 10.1111/j.1747-5457.2006.00337.x

    CrossRef Google Scholar

    [66] Petersen H I, Lindström S, Nytoft H P, et al. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (Hydrogen Index)[J]. International Journal of Coal Geology, 2009, 78(2):119-134. doi: 10.1016/j.coal.2008.11.003

    CrossRef Google Scholar

    [67] Singh P K, Singh M P, Singh A K, et al. Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2010, 81(2):109-116. doi: 10.1016/j.coal.2009.11.006

    CrossRef Google Scholar

    [68] Widodo S, Oschmann W, Bechtel A, et al. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): implications for paleoenvironmental conditions[J]. International Journal of Coal Geology, 2010, 81(3):151-162. doi: 10.1016/j.coal.2009.12.003

    CrossRef Google Scholar

    [69] Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104:9-21. doi: 10.1016/j.coal.2012.09.005

    CrossRef Google Scholar

    [70] Hakimi M H, Abdullah W H, Alias F L, et al. Organic petrographic characteristics of Tertiary (Oligocene–Miocene) coals from eastern Malaysia: rank and evidence for petroleum generation[J]. International Journal of Coal Geology, 2013, 120:71-81. doi: 10.1016/j.coal.2013.10.003

    CrossRef Google Scholar

    [71] Chaiseanwang P, Chenrai P. Organic geochemical characteristics of Mae Teep coal deposits, Thailand[J]. ScienceAsia, 2020, 46S:102-109. doi: 10.2306/scienceasia1513-1874.2020.S015

    CrossRef Google Scholar

    [72] Sattraburut T, Ratanasthien B, Thasod Y. Palaeovegetation and palaeoclimate of tertiary sediments from Hongsa Coalfield, Xayabouly province, Lao PDR: implication from palynofloras[J]. Songklanakarin Journal of Science and Technology, 2021, 43(3):648-659.

    Google Scholar

    [73] Fikri H N, Sachsenhofer R F, Bechtel A, et al. Organic geochemistry and petrography in Miocene coals in the Barito Basin (Tutupan Mine, Indonesia): evidence for astronomic forcing in kerapah type peats[J]. International Journal of Coal Geology, 2022, 256:103997. doi: 10.1016/j.coal.2022.103997

    CrossRef Google Scholar

    [74] Petersen H I, Fyhn M B W, Nytoft H P, et al. Miocene coals in the Hanoi Trough, onshore northern Vietnam: depositional environment, vegetation, maturity, and source rock quality[J]. International Journal of Coal Geology, 2022, 253:103953. doi: 10.1016/j.coal.2022.103953

    CrossRef Google Scholar

    [75] Patria A A, Suhendra R, Anggara F, et al. Association and textural-compositional evolution of pyrite-organic matter in coals of the Tarakan, Barito, and Pasir Basins, Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2024, 282:104442. doi: 10.1016/j.coal.2023.104442

    CrossRef Google Scholar

    [76] Dai S F, Bechtel A, Eble C F, et al. Recognition of peat depositional environments in coal: a review[J]. International Journal of Coal Geology, 2020, 219:103383. doi: 10.1016/j.coal.2019.103383

    CrossRef Google Scholar

    [77] Sun Y Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology[J]. Palaeoworld, 2024.

    Google Scholar

    [78] Ruan Y, Mohtadi M, Dupont L M, et al. Interaction of fire, vegetation, and climate in tropical ecosystems: a multiproxy study over the past 22, 000 years[J]. Global Biogeochemical Cycles, 2020, 34(11):e2020GB006677. doi: 10.1029/2020GB006677

    CrossRef Google Scholar

    [79] Sen S, Naskar S, Das S. Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices[J]. Marine and Petroleum Geology, 2016, 73:371-391. doi: 10.1016/j.marpetgeo.2016.03.015

    CrossRef Google Scholar

    [80] Wilson M E J, Vecsei A. The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development[J]. Earth-Science Reviews, 2005, 69(1-2):133-168. doi: 10.1016/j.earscirev.2004.08.003

    CrossRef Google Scholar

    [81] Wilson M E J. Equatorial carbonates: an earth systems approach[J]. Sedimentology, 2012, 59(1):1-31. doi: 10.1111/j.1365-3091.2011.01293.x

    CrossRef Google Scholar

    [82] Reijmer J J G. Marine carbonate factories: review and update[J]. Sedimentology, 2021, 68(5):1729-1796. doi: 10.1111/sed.12878

    CrossRef Google Scholar

    [83] Wilson M E J. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development[J]. Sedimentary Geology, 2002, 147(3-4):295-428. doi: 10.1016/S0037-0738(01)00228-7

    CrossRef Google Scholar

    [84] Morley R J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change[J]. Journal of Tropical Ecology, 2018, 34(4):209-234. doi: 10.1017/S0266467418000202

    CrossRef Google Scholar

    [85] Morley R J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests[M]//Bush M, Flenley J, Gosling W. Tropical Rainforest Responses to Climatic Change. Berlin: Springer, 2011: 1-34.

    Google Scholar

    [86] Bansal M, Morley R J, Nagaraju S, et al. Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange[J]. Science, 2022, 375(6579):455-460. doi: 10.1126/science.abk2177

    CrossRef Google Scholar

    [87] Klaus S, Morley R J, Plath M, et al. Biotic interchange between the Indian subcontinent and mainland Asia through time[J]. Nature Communications, 2016, 7(1):12132. doi: 10.1038/ncomms12132

    CrossRef Google Scholar

    [88] Joyce E M, Thiele K R, Slik J W F, et al. Plants will cross the lines: climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone[J]. Biological Journal of the Linnean Society, 2021, 132(2):374-387. doi: 10.1093/biolinnean/blaa194

    CrossRef Google Scholar

    [89] Li J T, Li Y, Klaus S, et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3441-3446.

    Google Scholar

    [90] Chen J M, Prendini E, Wu Y H, et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae)[J]. Molecular Phylogenetics and Evolution, 2020, 145:106724. doi: 10.1016/j.ympev.2019.106724

    CrossRef Google Scholar

    [91] Yuan L M, Deng X L, Jiang D C, et al. Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present[J]. Zoological Research, 2021, 42(1):116-123. doi: 10.24272/j.issn.2095-8137.2020.246

    CrossRef Google Scholar

    [92] Zhu R X, Wang H J, Wang H J, et al. Multi-spherical interactions and mechanisms of hydrocarbon enrichment in the Southeast Asian archipelagic tectonic system[J]. Science China Earth Sciences, 2024, 67(2):566-583. doi: 10.1007/s11430-023-1254-4

    CrossRef Google Scholar

    [93] Sun X J, Wang P X. How old is the Asian monsoon system? palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4):181-222. doi: 10.1016/j.palaeo.2005.03.005

    CrossRef Google Scholar

    [94] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3):153-174. doi: 10.5194/cp-4-153-2008

    CrossRef Google Scholar

    [95] Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688):721-725. doi: 10.1126/science.227.4688.721

    CrossRef Google Scholar

    [96] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224. doi: 10.1029/98PA00123

    CrossRef Google Scholar

    [97] Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants[J]. Earth and Planetary Science Letters, 2013, 375:408-417. doi: 10.1016/j.jpgl.2013.06.005

    CrossRef Google Scholar

    [98] Polissar P J, Uno K T, Phelps S R, et al. Hydrologic changes drove the Late Miocene expansion of C4 grasslands on the Northern Indian subcontinent[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004108. doi: 10.1029/2020PA004108

    CrossRef Google Scholar

    [99] Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056

    CrossRef Google Scholar

    [100] Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35 Ma: black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079

    CrossRef Google Scholar

    [101] Carrapa B, Clementz M, Feng R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20):9747-9752.

    Google Scholar

    [102] Latorre C, Quade J, McIntosh W C. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas[J]. Earth and Planetary Science Letters, 1997, 146(1-2):83-96. doi: 10.1016/S0012-821X(96)00231-2

    CrossRef Google Scholar

    [103] Hyland E G, Sheldon N D, Smith S Y, et al. Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift[J]. GSA Bulletin, 2019, 131(1-2):224-234. doi: 10.1130/B32009.1

    CrossRef Google Scholar

    [104] Andrae J W, McInerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the Late Pliocene[J]. Geophysical Research Letters, 2018, 45(10):4831-4840. doi: 10.1029/2018GL077833

    CrossRef Google Scholar

    [105] Zhang R, Liu Z H, Jiang D B, et al. Cenozoic Indo-Pacific warm pool controlled by both atmospheric CO2 and paleogeography[J]. Science Bulletin, 2024, 69(9):1323-1331. doi: 10.1016/j.scib.2024.02.028

    CrossRef Google Scholar

    [106] Scotese C R. Atlas of Earth History: Volume 1, Paleogeography[M]. Arlington: PALEOMAP Project, 2001.

    Google Scholar

    [107] Yan Q, Korty R, Zhang Z S, et al. Large shift of the Pacific Walker Circulation across the Cenozoic[J]. National Science Review, 2021, 8(5):nwaa101. doi: 10.1093/nsr/nwaa101

    CrossRef Google Scholar

    [108] Wu F, Fang X M, Yang Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10):684-700.

    Google Scholar

    [109] Matsui H, Nishi H, Kuroyanagi A, et al. Vertical thermal gradient history in the eastern equatorial Pacific during the early to middle Miocene: implications for the equatorial thermocline development[J]. Paleoceanography, 2017, 32(7):729-743. doi: 10.1002/2016PA003058

    CrossRef Google Scholar

    [110] Dayem K E, Noone D C, Molnar P. Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D6):D06101.

    Google Scholar

    [111] Molnar P, Cronin T W. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages[J]. Paleoceanography, 2015, 30(3):196-225. doi: 10.1002/2014PA002752

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(513) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint