2025 Vol. 45, No. 3
Article Contents

XIA Dinghong, ZHAO Zhongqiang, ZHANG Jialin, LI Zhenyang, ZENG Liyuan, HE Hongming, SONG Yinxian, CHEN Zhong. Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102
Citation: XIA Dinghong, ZHAO Zhongqiang, ZHANG Jialin, LI Zhenyang, ZENG Liyuan, HE Hongming, SONG Yinxian, CHEN Zhong. Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102

Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain

More Information
  • The vertical zonation of climate in the north-south Gaoligong Mountain is obvious. The two sides of the mountain are subtropical monsoon climate and dry-hot valley climate, with great differences in hydrothermal conditions. Five weathering cross-sections on the east and west sides of the southern segment of the Gaoligong Mountain were studied, and the mineral composition and geochemical characteristics of REE in weathering crust under different climate conditions were analyzed. Results show that the minerals on the both sides include quartz, feldspar, calcite, dolomite, illite and kaolinite, and so on, and there are also minerals such as muscovite, montmorillonite, and montmorillonite-chlorite mixed-layer minerals on the west side, indicating that the weathering on the west side is more intensive. In general, the REE content r and the degree of differentiation are greater on the west side than those on the east side. With the decrease of altitude, REE is gradually enriched. The REE content of the east side is relatively low and varied slightly, which may be related to a certain degree of leaching and strong evaporation. There are obvious negative Eu anomalies on both sides, and the negative anomalies are greater on the west side. The Ce anomalies are positive on the west side, but weak negative anomalies on the east side. With the increase of pH, both LREE and HREE are enriched, and the enrichment on the west side is more significant. The correlation analysis of REE and minerals shows that LREE is strongly correlated with carbonate and clay minerals, and HREE is closely related to carbonate and feldspar minerals. The Eu/Sm and Ce/Eu ratios in the weathering crust are good indicators to the parent rocks, which are granitic rocks on the west side and sedimentary rocks on the east side.

  • 加载中
  • [1] 丁振举, 姚书振, 刘丛强, 等. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 2003, 19(4):792-798 doi: 10.3321/j.issn:1000-0569.2003.04.022

    CrossRef Google Scholar

    DING Zhenju, YAO Shuzhen, LIU Congqiang, et al. The characteristics of exhalation-sedimentary deposit of Donggouba polymetal deposit: evidence from ore's REE composition[J]. Acta Petrologica Sinica, 2003, 19(4):792-798.] doi: 10.3321/j.issn:1000-0569.2003.04.022

    CrossRef Google Scholar

    [2] Borrego J, Carro B, López-González N, et al. Effect of acid mine drainage on dissolved rare earth elements geochemistry along a fluvial estuarine system: the Tinto-Odiel Estuary (S. W. Spain)[J]. Hydrology Research, 2012, 43(3):262-274. doi: 10.2166/nh.2012.012b

    CrossRef Google Scholar

    [3] Tachikawa K, Piotrowski A M, Bayon G. Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures[J]. Quaternary Science Reviews, 2014, 88:1-13. doi: 10.1016/j.quascirev.2013.12.027

    CrossRef Google Scholar

    [4] 池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4):1-13

    Google Scholar

    CHI Ru’an, TIAN Jun, LUO Xianping, et al. The basic research on the weathered crust elution-deposited rare earth ores[J]. Nonferrous Metals Science and Engineering, 2012, 3(4):1-13.]

    Google Scholar

    [5] 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5):796-802 doi: 10.3969/j.issn.0254-5357.2013.05.020

    CrossRef Google Scholar

    WANG Denghong, ZHAO Zhi, YU Yang, et al. Progress, problems and research orientation of Ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 2013, 32(5):796-802.] doi: 10.3969/j.issn.0254-5357.2013.05.020

    CrossRef Google Scholar

    [6] 许成, 宋文磊, 何晨, 等. 外生稀土矿床的分布、类型和成因概述[J]. 矿物岩石地球化学通报, 2015, 34(2):234-241 doi: 10.3969/j.issn.1007-2802.2015.02.04

    CrossRef Google Scholar

    XU Cheng, SONG Wenlei, HE Chen, et al. The overview of the distribution, type and genesis of the exogenetic rare earth elements(REE)deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):234-241.] doi: 10.3969/j.issn.1007-2802.2015.02.04

    CrossRef Google Scholar

    [7] 赵芝, 王登红, 陈郑辉, 等. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 2017, 91(12):2814-2827 doi: 10.3969/j.issn.0001-5717.2017.12.016

    CrossRef Google Scholar

    ZHAO Zhi, WANG Denghong, CHEN Zhenghui, et al. Progress of research on metallogenic regularity of Ion-adsorption type REE deposit in the Nanling range[J]. Acta Geologica Sinica, 2017, 91(12):2814-2827.] doi: 10.3969/j.issn.0001-5717.2017.12.016

    CrossRef Google Scholar

    [8] 池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 2019, 37(2):129-140

    Google Scholar

    CHI Ru’an, LIU Xuemei. Prospect and development of weathered crust elution-deposited rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(2):129-140.]

    Google Scholar

    [9] 陆蕾, 王登红, 王成辉, 等. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报, 2019, 93(6):1466-1478 doi: 10.3969/j.issn.0001-5717.2019.06.022

    CrossRef Google Scholar

    LU Lei, WANG Denghong, WANG Chenghui, et al. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 2019, 93(6):1466-1478.] doi: 10.3969/j.issn.0001-5717.2019.06.022

    CrossRef Google Scholar

    [10] 陆蕾, 王登红, 王成辉, 等. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 2020, 94(1):179-191

    Google Scholar

    LU Lei, WANG Denghong, WANG Chenghui, et al. The metallogenic regularity of ion-adsorption type REE deposit in Yunnan Province[J]. Acta Geologica Sinica, 2020, 94(1):179-191.]

    Google Scholar

    [11] 黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 中国科学院广州地球化学研究所博士学位论文, 2021

    Google Scholar

    HUANG Jian. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021.]

    Google Scholar

    [12] 梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1):29-41

    Google Scholar

    LIANG Xiaoliang, TAN Wei, MA Lingya, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1):29-41.]

    Google Scholar

    [13] 崔丽峰, 刘丛强, 赵志琦, 等. 青藏高原东南缘花岗岩风化壳稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 2017, 36(S1):515

    Google Scholar

    CUI Lifeng, LIU Congqiang, ZHAO Zhiqi, et al. Geochemical characteristics of rare earth elements in granite weathering crusts from the southeastern margin of the Tibetan Plateau[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(S1):515.]

    Google Scholar

    [14] 王佳龙. 青藏高原东南缘高黎贡山新生代剥露演化[D]. 中国地震局地质研究所博士学位论文, 2022

    Google Scholar

    WANG Jialong. Exhumation processes and evolution of the Gaoligong Mountains at the Southeastern margin of the Qinghai-Tibet Plateau since the cenozoic[D]. Doctor Dissertation of Institute of Geology, China Earthquake Administration, 2022.]

    Google Scholar

    [15] Ding Y X, Peng S Z. Spatiotemporal trends and attribution of drought across China from 1901-2100[J]. Sustainability, 2020, 12(2):477. doi: 10.3390/su12020477

    CrossRef Google Scholar

    [16] 王泽丽. 金沙江河谷黄土状物质的成因及其环境指示意义研究[D]. 云南师范大学硕士学位论文, 2016

    Google Scholar

    WANG Zeli. Study on the genesis of loess-like materials in the Jinsha River valley and their environmental indicative significance[D]. Master Dissertation of Yunnan Normal University, 2016.]

    Google Scholar

    [17] 叶玉林, 苏怀, 董铭, 等. 元素和矿物组成揭示的金沙江干热河谷黄土状物质的物源[J]. 地球环境学报, 2018, 9(3):238-244 doi: 10.7515/JEE182020

    CrossRef Google Scholar

    YE Yulin, SU Huai, DONG Ming, et al. Elements and mineral composition indicating the provenance of loess-like sediments in Dry-Hot Valleys of Jinsha River[J]. Journal of Earth Environment, 2018, 9(3):238-244.] doi: 10.7515/JEE182020

    CrossRef Google Scholar

    [18] Cook H E, Johnson P D, Matti J C, et al. Methods of sample preparation and X-ray diffraction data analysis, X-Ray mineralogy laboratory, deep sea drilling project, university of California, riverside[J]. 1975.

    Google Scholar

    [19] Yuan Y Y, Liu S L, Wu M, et al. Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: A case study in Sichuan Basin, China[J]. Science of the Total Environment, 2021, 791:148404. doi: 10.1016/j.scitotenv.2021.148404

    CrossRef Google Scholar

    [20] Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 1984, 2:63-114.

    Google Scholar

    [21] 陈骏, 王洪涛, 鹿化煜. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报, 1996, 70(1):61-72

    Google Scholar

    CHEN Jun, WANG Hongtao, LU Huayu. Behaviours of ree and other trace elements during pedological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China[J]. Acta Geologica Sinica, 1996, 70(1):61-72.]

    Google Scholar

    [22] 陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6):1155-1162

    Google Scholar

    CHEN Liang, LIU Chunlian, ZHUANG Chang, et al. Rare earth element records of the lower paleogene sediments in the Sanshui basin and their paleocliate implications[J]. Acta Sedimentologica Sinica, 2009, 27(6):1155-1162.]

    Google Scholar

    [23] 张虎才, 张文翔, 常凤琴, 等. 稀土元素在湖相沉积中的地球化学分异: 以柴达木盆地贝壳堤剖面为例[J]. 中国科学 D辑: 地球科学, 2009, 39(8): 1160-1168

    Google Scholar

    ZHANG Hucai, ZHANG Wenxiang, CHANG Fengqin, et al. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam basin[J]. Science in China Series D: Earth Sciences, 2009, 52(11): 1703-1713.]

    Google Scholar

    [24] 王中刚, 于学元. 稀土元素地球化学[M]. 北京: 科学出版社, 1989

    Google Scholar

    WANG Zhonggang, YU Xueyuan. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989.]

    Google Scholar

    [25] Duddy L R. Redistribution and fractionation of rare-earth and other elements in a weathering profile[J]. Chemical Geology, 1980, 30(4):363-381. doi: 10.1016/0009-2541(80)90102-3

    CrossRef Google Scholar

    [26] 杨骏雄, 刘丛强, 赵志琦, 等. 不同气候带花岗岩风化过程中稀土元素的地球化学行为[J]. 矿物学报, 2016, 36(1):125-137

    Google Scholar

    YANG Junxiong, LIU Congqiang, ZHAO Zhiqi, et al. Geochemical behavior of rare-earth element during the weathering of granite under different climatic conditions[J]. Acta Mineralogica Sinica, 2016, 36(1):125-137.]

    Google Scholar

    [27] Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica et Cosmochimica Acta, 1995, 59(2):279-294. doi: 10.1016/0016-7037(94)00280-Y

    CrossRef Google Scholar

    [28] Dawood Y H, El-Naby H H A, Sharafeldin A A. Influence of the alteration processes on the origin of uranium and europium anomalies in trachyte, central Eastern Desert, Egypt[J]. Journal of Geochemical Exploration, 2004, 81(1-3):15-27. doi: 10.1016/S0375-6742(03)00210-3

    CrossRef Google Scholar

    [29] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987

    Google Scholar

    LIU Yingjun, CAO Liming. Introduction to Elemental Geochemistry[M]. Beijing: Geological Press, 1987.]

    Google Scholar

    [30] Nesbitt H W, Wilson R E. Recent chemical weathering of basalts[J]. American Journal of Science, 1992, 292(10):740-777. doi: 10.2475/ajs.292.10.740

    CrossRef Google Scholar

    [31] Censi P, Sprovieri M, Saiano F, et al. The behaviour of REEs in Thailand's Mae Klong estuary: Suggestions from the Y/Ho ratios and lanthanide tetrad effects[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3-4):569-579. doi: 10.1016/j.ecss.2006.09.003

    CrossRef Google Scholar

    [32] Topp S E, Salbu B, Roaldset E, et al. Vertical distribution of trace elements in laterite soil (Suriname)[J]. Chemical Geology, 1984, 47(1-2):159-174. doi: 10.1016/0009-2541(84)90104-9

    CrossRef Google Scholar

    [33] Banfield J F, Eggleton R A. Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering[J]. Clays and Clay Minerals, 1989, 37(2):113-127. doi: 10.1346/CCMN.1989.0370202

    CrossRef Google Scholar

    [34] 包志伟. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学, 1992, 21(2):166-174 doi: 10.3321/j.issn:0379-1726.1992.02.008

    CrossRef Google Scholar

    BAO Zhiwei. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 1992, 21(2):166-174.] doi: 10.3321/j.issn:0379-1726.1992.02.008

    CrossRef Google Scholar

    [35] 雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7):692-708 doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    CrossRef Google Scholar

    LUO Kai, MA Jinlong. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite[J]. Advances in Earth Science, 2022, 37(7):692-708.] doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    CrossRef Google Scholar

    [36] 马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1):87-94 doi: 10.3321/j.issn:1001-8166.2004.01.012

    CrossRef Google Scholar

    MA Yingjun, HUO Runke, XU Zhifang, et al. REE behavior and influence factors during chemical weathering[J]. Advances in Earth Science, 2004, 19(1):87-94.] doi: 10.3321/j.issn:1001-8166.2004.01.012

    CrossRef Google Scholar

    [37] Mihajlovic J, Stärk H J, Rinklebe J. Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany[J]. Geoderma, 2014, 228-229:160-172. doi: 10.1016/j.geoderma.2013.12.009

    CrossRef Google Scholar

    [38] Bray A W, Oelkers E H, Bonneville S, et al. The effect of pH, grain size, and organic ligands on biotite weathering rates[J]. Geochimica et Cosmochimica Acta, 2015, 164:127-145. doi: 10.1016/j.gca.2015.04.048

    CrossRef Google Scholar

    [39] 何耀, 程柳, 李毅, 等. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土, 2015, 36(4):98-103

    Google Scholar

    HE Yao, CHENG Liu, LI Yi, et al. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 2015, 36(4):98-103.]

    Google Scholar

    [40] 池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6):641-650 doi: 10.3321/j.issn:1000-4343.2007.06.001

    CrossRef Google Scholar

    CHI Ru’an, TIAN Jun. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6):641-650.] doi: 10.3321/j.issn:1000-4343.2007.06.001

    CrossRef Google Scholar

    [41] Sanematsu K, Watanabe Y. Characteristics and genesis of ion adsorption-type rare earth element deposits[M]//Verplanck P L, Hitzman M W. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, 2016.

    Google Scholar

    [42] 赵芝, 王登红, 刘新星, 等. 广西花山岩体不同风化阶段稀土元素特征及其影响因素[J]. 稀土, 2015, 36(3):14-20

    Google Scholar

    ZHAO Zhi, WANG Denghong, LIU Xinxing, et al. Geochemical features of rare earth elements in different weathering stage of the Guangxi Huashan granite and its influence factors[J]. Chinese Rare Earths, 2015, 36(3):14-20.]

    Google Scholar

    [43] Li M Y H, Zhou M F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China[J]. Economic Geology, 2019, 114(3):541-568. doi: 10.5382/econgeo.4642

    CrossRef Google Scholar

    [44] Fu W, Li X T, Feng Y Y, et al. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology[J]. Chemical Geology, 2019, 520:33-51. doi: 10.1016/j.chemgeo.2019.05.006

    CrossRef Google Scholar

    [45] Wen X Y, Huang C M, Tang Y, et al. Rare earth elements: a potential proxy for identifying the lacustrine sediment source and soil erosion intensity in karst areas[J]. Journal of Soils and Sediments, 2014, 14(10):1693-1702. doi: 10.1007/s11368-014-0928-y

    CrossRef Google Scholar

    [46] Xie Y Y, Meng J, Guo L E. REE geochemistry of modern Eolian dust deposits in Harbin city, Heilongjiang province, China: implications for provenance[J]. Catena, 2014, 123:70-78. doi: 10.1016/j.catena.2014.07.008

    CrossRef Google Scholar

    [47] 周国兴, 赵恩好, 岳明新, 等. 稀土元素地球化学分析在地质学中的意义[J]. 地质与资源, 2014, 23(5):495-499 doi: 10.3969/j.issn.1671-1947.2014.05.016

    CrossRef Google Scholar

    ZHOU Guoxing, ZHAO Enhao, YUE Mingxin, et al. Geological significance of rare earth elements in geochemical analysis[J]. Geology and Resources, 2014, 23(5):495-499.] doi: 10.3969/j.issn.1671-1947.2014.05.016

    CrossRef Google Scholar

    [48] Egashira K, Iwashita S, Yamasaki S I. Clay mineral status of paddy soils from the Tai Lake Region of China in relation to high paddy-rice productivity[J]. Soil Science and Plant Nutrition, 1997, 43(3):521-530. doi: 10.1080/00380768.1997.10414779

    CrossRef Google Scholar

    [49] Egashira K, Fujii K, Yamasaki S, et al. Rare earth element and clay minerals of paddy soils from the central region of the Mekong River, Laos[J]. Geoderma, 1997, 78(3-4):237-249. doi: 10.1016/S0016-7061(97)00031-1

    CrossRef Google Scholar

    [50] 杨恬, 朱照宇, 吴翼, 等. 中国东部地带表土稀土元素的地球化学特征[J]. 地学前缘, 2010, 17(3):233-241

    Google Scholar

    YANG Tian, ZHU Zhaoyu, WU Yi, et al. Rare earth elements geochemistry in topsoils from the eastern part of China[J]. Earth Science Frontiers, 2010, 17(3):233-241.]

    Google Scholar

    [51] 陶安, 宋照亮, 李建武. 玄武岩发育土壤稀土元素地球化学特征及其指示意义[J]. 地球与环境, 2023, 51(4):388-400

    Google Scholar

    TAO An, SONG Zhaoliang, LI Jianwu. Geochemical characteristics and indicative significance of soil rare earth elements developed from basalt[J]. Earth and Environment, 2023, 51(4):388-400.]

    Google Scholar

    [52] 钱建民, 华杰雄. 浙江省燕山期花岗岩化学元素丰度及特征[J]. 矿产勘查, 2022, 13(11):1581-1602

    Google Scholar

    QIAN Jianmin, HUA Jiexiong. Abundances of elements of Yanshanian granitoids in Zhejiang province and their characteristics[J]. Mineral Exploration, 2022, 13(11):1581-1602.]

    Google Scholar

    [53] 魏震洋, 于津海, 王丽娟, 等. 南岭地区新元古代变质沉积岩的地球化学特征及构造意义[J]. 地球化学, 2009, 38(1):1-19 doi: 10.3321/j.issn:0379-1726.2009.01.001

    CrossRef Google Scholar

    WEI Zhenyang, YU Jinhai, WANG Lijuan, et al. Geochemical features and tectonic significances of Neoproterozoic metasedimentary rocks from Nanling range[J]. Geochimica, 2009, 38(1):1-19.] doi: 10.3321/j.issn:0379-1726.2009.01.001

    CrossRef Google Scholar

    [54] 罗改, 张彤, 贾小川, 等. 滇西北石鼓杂岩中花岗质片麻岩年代学、地球化学特征及地质意义[J]. 地质学报, 2021, 95(11):3335-3351 doi: 10.3969/j.issn.0001-5717.2021.11.012

    CrossRef Google Scholar

    LUO Gai, ZHANG Tong, JIA Xiaochuan, et al. Geochronology, geochemical features and geological significance of the granitic gneiss in the Shigu complex, northwest Yunnan, China[J]. Acta Geologica Sinica, 2021, 95(11):3335-3351.] doi: 10.3969/j.issn.0001-5717.2021.11.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(81) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint