2024 Vol. 44, No. 5
Article Contents

CAI Chuanshuang, ZHAO Guangming, SU Dapeng, DING Xigui, NI Xin, ZHANG Yao. Risk assessment and source analysis of heavy metal pollution in wetland sediments in the northern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 176-188. doi: 10.16562/j.cnki.0256-1492.2024030801
Citation: CAI Chuanshuang, ZHAO Guangming, SU Dapeng, DING Xigui, NI Xin, ZHANG Yao. Risk assessment and source analysis of heavy metal pollution in wetland sediments in the northern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 176-188. doi: 10.16562/j.cnki.0256-1492.2024030801

Risk assessment and source analysis of heavy metal pollution in wetland sediments in the northern Yellow River Delta

More Information
  • The contents of Cu, Pb, Zn, Cr, Ni, Cd, As and Hg in 39 surface sediment samples collected in June 2021 from the northern wetland of the Yellow River Delta were determined, and the risk assessment and source analysis of heavy metal pollution in the sediments of the northern wetland of the Yellow River Delta were carried out. Results show that the average contents of eight heavy metal elements in the surface sediments of the wetland in the northern Yellow River Delta were in the order of Cr>Zn>Ni>Pb>Cu>As>Cd>Hg, which were lower than the soil background values of Shandong Province except for As. The sediments were mainly sandy silt, and the spatial distribution characteristics of heavy metal elements are similar, which may be affected by the “grain size effect”. The cumulative index and potential ecological hazard index (RI) revealed that Cd and Hg were the main pollutants and important potential ecological risk factors in the study area. Correlation analysis and factor analysis showed that the sources of Cu, Pb, Zn, Cr, As, and Hg might be soil parent materials, industrial activities, and oilfield exploitation, and the sources of Ni and Cd might be from agricultural activities, aquaculture and oilfield exploitation. Cluster analysis showed that Cr could be placed into separate category. Through factor detection analysis, it was found that clay content, TOC and water content had a greater explanatory power on the RI, indicating that they had a greater impact on the RI value. The interaction detection analysis showed that the interaction of any two influencing factors resulted in two-factor enhancement or nonlinear enhancement, indicating that the complex environment aggravated the potential ecological hazards of wetlands. This study provided a scientific support for the control of heavy metal pollution in wetlands in the northern Yellow River Delta.

  • 加载中
  • [1] 王辉, 赵悦铭, 刘春跃, 等. 辽河干流沉积物重金属污染特征及潜在生态风险评价[J]. 环境工程, 2019, 37(11):65-69

    Google Scholar

    WANG Hui, ZHAO Yueming, LIU Chunyue, et al. Characterization of heavy metal contamination and evaluation of potential ecological risk of sediments in the main stream of Liaohe River[J]. Environmental Engineering, 2019, 37(11):65-69.]

    Google Scholar

    [2] 柴元武, 宫静. 重金属对人类健康的影响[J]. 固原师专学报, 2002, 23(6):19-20

    Google Scholar

    CHAI Yuanwu, GONG Jing. Effects of heavy metals on human health[J]. Journal of Guyuan Teachers College, 2002, 23(6):19-20.]

    Google Scholar

    [3] 陈雪娟, 高放, 王青, 等. 黄河三角洲湿地淡水修复区重金属分布特征及潜在风险[J]. 环境工程, 2023, 41(1):232-239

    Google Scholar

    CHEN Xuejuan, GAO Fang, WANG Qing, et al. Distribution characteristics and potential risks of heavy metals in freshwater restored wetlands in the Yellow River Delta[J]. Environmental Engineering, 2023, 41(1):232-239.]

    Google Scholar

    [4] Ding Z, Wu J, You A, et al. Effects of heavy metals on soil microbial community structure and diversity in the rice (Oryza sativa L. subsp. japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere[J]. Soil Science & Plant Nutrition, 2017, 63(1): 75-83.

    Google Scholar

    [5] 宋颖, 李华栋, 时文博, 等. 黄河三角洲湿地重金属污染生态风险评价[J]. 环境保护科学, 2018, 44(5):118-122

    Google Scholar

    SONG Ying, LI Huadong, SHI Wenbo, et al. Ecological risk assessment of heavy metal pollution in wetlands of the Yellow River Delta[J]. Environmental Protection Science, 2018, 44(5):118-122.]

    Google Scholar

    [6] 贾少宁, 申发, 颜宁, 等. 黄河三角洲不同土地利用方式下土壤重金属分析评价[J]. 鲁东大学学报:自然科学版, 2023, 39(3):193-202

    Google Scholar

    JIA Shaoning, SHEN Fa, YAN Ning, et al. Analysis and evaluation of soil heavy metals under different land use in the Yellow River Delta[J]. Journal of Ludong University (Natural Science Edition), 2023, 39(3):193-202.]

    Google Scholar

    [7] 吴志勇, 黄川友. 湿地构成变化与湿地保护[J]. 环境科学与技术, 2001(S2):32-34 doi: 10.3969/j.issn.1003-6504.2001.z2.014

    CrossRef Google Scholar

    WU Zhiyong, HUANG Chuanyou. Changes in wetland composition and wetland conservation[J]. Environmental Science and Technology, 2001(S2):32-34.] doi: 10.3969/j.issn.1003-6504.2001.z2.014

    CrossRef Google Scholar

    [8] 杨清香, 李小庆, 于淼成, 等. 黄河三角洲实验区表层沉积物重金属污染特征及防控策略[J]. 环境工程学报, 2023, 17(7):2424-2432 doi: 10.12030/j.cjee.202212135

    CrossRef Google Scholar

    YANG Qingxiang, LI Xiaoqing, YU Miaocheng, et al. Characteristics of heavy metal pollution in surface sediments of the Yellow River Delta Experimental Area and strategies for prevention and control[J]. Journal of Environmental Engineering, 2023, 17(7):2424-2432.] doi: 10.12030/j.cjee.202212135

    CrossRef Google Scholar

    [9] Yang H, Sun J, Xia J, et al. Distribution and Assessment of Cr, Pb, Ni and Cd in Topsoil of the Modern Yellow River Delta, China[J]. Wetlands, 2021, 41(2): 26.

    Google Scholar

    [10] 别君, 黄海军, 樊辉, 等. 现代黄河三角洲地面沉降及其原因分析[J]. 海洋地质与第四纪地质, 2006, 26(4):29-35

    Google Scholar

    BIE Jun, HUANG Navy, FAN Hui, et al. Ground subsidence in the modern Yellow River Delta and its causes[J]. Marine Geology and Quaternary Geology, 2006, 26(4):29-35.]

    Google Scholar

    [11] 薛春汀, 叶思源, 高茂生, 等. 现代黄河三角洲沉积物沉积年代的确定[J]. 海洋学报, 2009, 31(1):117-124

    Google Scholar

    XUE Chunting, YE Siyuan, GAO Maosheng, et al. Determination of sedimentary age of modern Yellow River Delta sediments[J]. Journal of Oceanography, 2009, 31(1):117-124.]

    Google Scholar

    [12] 王奎峰, 李念春, 王薇. 黄河三角洲多年海岸线动态变迁特征及演化规律[J]. 应用海洋学学报, 2018, 37(3):330-338 doi: 10.3969/J.ISSN.2095-4972.2018.03.004

    CrossRef Google Scholar

    WANG Kueifeng, LI Nianchun, WANG Wei. Characteristics of multi–year coastline dynamics change and evolution law in the Yellow River Delta[J]. Journal of Applied Oceanography, 2018, 37(3):330-338.] doi: 10.3969/J.ISSN.2095-4972.2018.03.004

    CrossRef Google Scholar

    [13] 陈柯欣, 丛丕福, 曲丽梅, 等. 黄河三角洲湿地水文连通及驱动力分析[J]. 水文, 2023, 43(3):112-117

    Google Scholar

    CHEN Kexin, CONG Pifu, QU Limei, et al. Hydrological connectivity and driving force analysis of wetlands in the Yellow River Delta[J]. Hydrology, 2023, 43(3):112-117.]

    Google Scholar

    [14] 熊燕. 土壤质量和土壤重金属污染评价方法综述[J]. 贵阳学院学报:自然科学版, 2021, 16(3):92-95

    Google Scholar

    XIONG Yan. Review of soil quality and soil heavy metal pollution evaluation methods[J]. Journal of Guiyang College (Natural Science Edition), 2021, 16(3):92-95.]

    Google Scholar

    [15] 刘晶, 滕彦国, 崔艳芳, 等. 土壤重金属污染生态风险评价方法综述[J]. 环境监测管理与技术, 2007, 19(3):6-11 doi: 10.3969/j.issn.1006-2009.2007.03.003

    CrossRef Google Scholar

    LIU Jing, TENG Yanguo, CUI Yanfang, et al. A review of ecological risk assessment methods for soil heavy metal pollution[J]. Environmental Monitoring Management and Technology, 2007, 19(3):6-11.] doi: 10.3969/j.issn.1006-2009.2007.03.003

    CrossRef Google Scholar

    [16] 刘德成, 李玉倩, 郑纯静, 等. 土壤重金属污染风险评价方法对比研究[J]. 河北农业科学, 2020, 24(4):89-95

    Google Scholar

    LIU Decheng, LI Yuqian, ZHENG Chunjing, et al. Comparative study of risk assessment methods for soil heavy metal pollution[J]. Hebei Agricultural Science, 2020, 24(4):89-95.]

    Google Scholar

    [17] 田文, 顾延生, 丁俊傑. 江汉平原仙桃地区湿地沉积物重金属污染风险评价[J]. 安全与环境工程, 2023, 30(4):243-252

    Google Scholar

    TIAN Wen, GU Yansheng, DING Junjie. Risk assessment of heavy metal contamination in wetland sediments in Xiantao, Jianghan Plain[J]. Safety and Environmental Engineering, 2023, 30(4):243-252.]

    Google Scholar

    [18] 滕彦国, 庹先国, 倪师军, 等. 应用地质累积指数评价沉积物中重金属污染: 选择地球化学背景的影响[J]. 环境科学与技术, 2002, 25(2):7-9 doi: 10.3969/j.issn.1003-6504.2002.02.003

    CrossRef Google Scholar

    TENG Yanguo, TOU Xiangguo, NI Shijun, et al. Evaluation of heavy metal contamination in sediments using the geoaccumulation index: Influence of selecting the geochemical background[J]. Environmental Science and Technology, 2002, 25(2):7-9.] doi: 10.3969/j.issn.1003-6504.2002.02.003

    CrossRef Google Scholar

    [19] 李逸平, 王香莲, 金如意, 等. 鄱阳湖南矶山湿地沉积物重金属污染特征及潜在生态风险[J]. 环境污染与防治, 2022, 44(11):1491-1496, 1502

    Google Scholar

    LI Yiping, WANG Xianglian, JIN Ruyi, et al. Characteristics of heavy metal contamination and potential ecological risk in the sediments of Nanjishan Wetland, Poyang Lake[J]. Environmental Pollution and Prevention, 2022, 44(11):1491-1496, 1502.]

    Google Scholar

    [20] 陈晨, 王兵, 王寒冰, 等. 山东东营市三角洲地区土壤重金属污染及生态风险评价[J]. 自然保护地, 2023, 3(3):94-102 doi: 10.12335/2096-8981.2022091901

    CrossRef Google Scholar

    CHEN Chen, WANG Bing, WANG Hanbing, et al. Evaluation of soil heavy metal pollution and ecological risk in the delta area of Dongying City, Shandong Province[J]. Nature Reserve, 2023, 3(3):94-102.] doi: 10.12335/2096-8981.2022091901

    CrossRef Google Scholar

    [21] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134 doi: 10.11821/dlxb201701010

    CrossRef Google Scholar

    WANG Jinfeng, XU Chengdong. Geoprobes: principles and perspectives[J]. Journal of Geography, 2017, 72(1):116-134.] doi: 10.11821/dlxb201701010

    CrossRef Google Scholar

    [22] Cheng Q, Lou G, Huang W, et al. Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, Eastern China[J]. Environmental Science & Pollution Research, 2017, 24(21): 17446-17454.

    Google Scholar

    [23] 国家环境保护局. GB15618–1995土壤环境质量标准[S]. 北京: 中国标准出版社, 1995

    Google Scholar

    National Environmental Protection Bureau. GB15618–1995 Quality Standard for Soil Environment [S]. Beijing: China Standard Press, 1995.]

    Google Scholar

    [24] 涂春霖, 和成忠, 马一奇, 等. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3):410-419

    Google Scholar

    TU Chunlin, HE Chengzhong, MA Yiqi, et al. Characterization, ecological risk and source analysis of heavy metal contamination in sediments of the Pearl River Basin[J]. Geological Frontiers, 2024, 31(3):410-419.]

    Google Scholar

    [25] 张明, 陈国光, 刘红樱, 等. 长江三角洲地区土壤重金属含量及其分异特征[J]. 土壤通报, 2012, 43(5):1098-1103

    Google Scholar

    ZHANG Ming, CHEN Guoguang, LIU Hongzhu, et al. Heavy metal contents of soils and their differentiation characteristics in the Yangtze River Delta region[J]. Soil Bulletin, 2012, 43(5):1098-1103.]

    Google Scholar

    [26] 段云莹, 裴绍峰, 廖名稳, 等. 莱州湾表层沉积物重金属分布特征、污染评价与来源分析[J]. 海洋地质与第四纪地质, 2021, 41(6):67-81

    Google Scholar

    DUAN Yunying, PEI Shaofeng, LIAO Mingjian, et al. Distribution characteristics, pollution assessment and source analysis of heavy metals in surface sediments of Laizhou Bay[J]. Marine Geology and Quaternary Geology, 2021, 41(6):67-81.]

    Google Scholar

    [27] 庞绪贵, 代杰瑞, 胡雪平, 等. 山东省土壤地球化学背景值[J]. 山东国土资源, 2018, 34(1):39-43 doi: 10.3969/j.issn.1672-6979.2018.01.005

    CrossRef Google Scholar

    PANG Xugui, DAI Jieri, HU Xueping, et al. Soil geochemical background values in Shandong Province[J]. Shandong Land Resources, 2018, 34(1):39-43.] doi: 10.3969/j.issn.1672-6979.2018.01.005

    CrossRef Google Scholar

    [28] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56 doi: 10.12128/j.issn.1672-6979.2019.01.008

    CrossRef Google Scholar

    PANG Xugui, DAI Jieri, CHEN Lei, et al. Soil geochemical background values of 17 cities in Shandong Province[J]. Shandong Land Resources, 2019, 35(1):46-56.] doi: 10.12128/j.issn.1672-6979.2019.01.008

    CrossRef Google Scholar

    [29] Wilding L P. Spatial variability: its documentation, accommodation and implication to soil surveys[C]. Soil spatial variability, 1985: 166-194.

    Google Scholar

    [30] 韦彩嫩, 牛红义, 吴群河, 等. 珠江(广州河段)表层沉积物中重金属的粒度效应[J]. 环境科学与管理, 2011, 36(10):53-56, 46 doi: 10.3969/j.issn.1673-1212.2011.10.014

    CrossRef Google Scholar

    WEI Caineng, NIU Hongyi, WU Qunhe, et al. Particle size effects of heavy metals in surface sediments of the Pearl River (Guangzhou River Section)[J]. Environmental Science and Management, 2011, 36(10):53-56, 46.] doi: 10.3969/j.issn.1673-1212.2011.10.014

    CrossRef Google Scholar

    [31] 赵玉庭, 孙珊, 由丽萍, 等. 莱州湾沉积物粒度与重金属分布特征[J]. 海洋科学, 2021, 45(3):43-50

    Google Scholar

    ZHAO Yuting, SUN Shan, YU Liping, et al. Characteristics of sediment particle size and heavy metal distribution in Laizhou Bay[J]. Marine Science, 2021, 45(3):43-50.]

    Google Scholar

    [32] 李伟迪, 崔云霞, 曾撑撑, 等. 太滆运河流域农田土壤重金属污染特征与来源解析[J]. 环境科学, 2019, 40(11):5073-5081

    Google Scholar

    LI Weidi, CUI Yunxia, ZENG Zandao, et al. Characteristics and sources of heavy metal pollution in farmland soils in the Taige Canal Basin[J]. Environmental Science, 2019, 40(11):5073-5081.]

    Google Scholar

    [33] Shan C Q, Zhang Z W, Zhao D Y, et al. Heavy Metal Contamination in soils from a major planting base of winter Jujube in the Yellow River Delta, China[J]. Processes, 2022, 10(9): 1777.

    Google Scholar

    [34] 郑美洁, 郑冬梅, 辛愿, 等. 互花米草入侵对黄河三角洲湿地表层沉积物金属元素分布格局的影响[J]. 生态学杂志, 2023, 42(10):2368-2375

    Google Scholar

    ZHENG Meijie, ZHENG Dongmei, XIN Wang, et al. Impacts of M. alterniflora invasion on the distribution pattern of metal elements in surface sediments of the Yellow River Delta wetland[J]. Journal of Ecology, 2023, 42(10):2368-2375.]

    Google Scholar

    [35] 张娜, 熊健, 李伟, 等. 巴嘎雪湿地土壤理化性质及其重金属风险评价[J]. 高原科学研究, 2023, 7(2):38-50

    Google Scholar

    ZHANG Na, XIONG Jian, LI Wei, et al. Physicochemical properties of soil and heavy metal risk assessment in Bagaxue wetland[J]. Plateau Science Research, 2023, 7(2):38-50.]

    Google Scholar

    [36] Förstner U, Wittmann G T W. Metal Pollution in the Aquatic Environment[M]. Berlin: Springer-Verlag, 1979.

    Google Scholar

    [37] El Azzi D, Probst J L, Teisserenc R, et al. Trace element and pesticide dynamics during a flood event in the save agricultural watershed: soil-river transfer pathways and controlling factors[J]. Water, Air, & Soil Pollution, 2016, 227(12): 1-19.

    Google Scholar

    [38] 马泉来, 万小强, 杨崇科, 等. 南太行典型区小流域土壤铅含量空间分异及影响因素分析[J]. 农业工程学报, 2023, 39(18):226-233 doi: 10.11975/j.issn.1002-6819.202306206

    CrossRef Google Scholar

    MA Quanlai, WAN Xiaoqiang, YANG Chongke, et al. Spatial differentiation of soil lead content in small watersheds in the South Taihang Typical Area and analysis of influencing factors[J]. Journal of Agricultural Engineering, 2023, 39(18):226-233.] doi: 10.11975/j.issn.1002-6819.202306206

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(7)

Article Metrics

Article views(819) PDF downloads(92) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint