2024 Vol. 44, No. 5
Article Contents

ZHANG Rui, CHEN Shiyue, XING Li, CHEN Yingying. Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 161-175. doi: 10.16562/j.cnki.0256-1492.2024060301
Citation: ZHANG Rui, CHEN Shiyue, XING Li, CHEN Yingying. Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 161-175. doi: 10.16562/j.cnki.0256-1492.2024060301

Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River

More Information
  • Lake sediments in the Yellow River reached are important geological carriers that record the overflow, diversion, and sedimentary environment changes of the river. Previously, it was difficult to effectively distinguish the Yellow-River-soured materials from those from other sources in the region, our knowledge of provenance and sedimentation in the lakes in the lower Yellow River reaches were inaccurate, which affected the comprehension of the changes in the lower Yellow River and the evolution of the sedimentary environment. The magnetic mineral characteristics of modern sediments and lake boreholes in the lower reaches of the Yellow River were studied. The sources of floodplain sediments in the Dayeze Lake borehole and the major sedimentary processes recorded in the Huangdun Depression borehole sediments in the northern Jiangsu were analyzed, from which key information of changes in river channel and sedimentary environment of the lower Yellow River reaches was extracted. Based on the differences in magnetic mineral types, particle sizes, and components, the main source of flood sediments in the Dayeze Lake borehole was identified as Yellow River silt, which confirms the effectiveness of magnetic mineral characteristic analysis in source identification and can be used to explore lake sedimentary processes. Furthermore, through the comprehensive analysis of high-resolution environmental magnetic indicators and environmental proxy indicators such as particle size and total organic carbon (TOC), it was revealed that since the early/middle Holocene (~9712 aBP), the sedimentary environment in the Huangdun Depression underwent very different sedimentation processes and the major transition from lacustrine terrigenous clastic facies to river flood facies took place at ~4201 aBP, indicating the earliest time when the Yellow River affected the Huangdun area in the northern Jiangsu. The above provenance analysis based on magnetic mineral characteristics and the discussion on sedimentary environment changes provide important scientific references for a deeper understanding of the changes in the lower reaches of the Yellow River and its relationship with lakes.

  • 加载中
  • [1] Wang Y J, Su Y J. The geo‐pattern of course shifts of the Lower Yellow River[J]. Journal of Geographical Sciences, 2011, 21(6):1019-1036. doi: 10.1007/s11442-011-0897-7

    CrossRef Google Scholar

    [2] Tan L C, Shen C C, Cai Y J, et al. Great flood in the middle-lower Yellow River reaches at 4000 a BP inferred from accurately-dated stalagmite records[J]. Science Bulletin, 2018, 63(4):206-208. doi: 10.1016/j.scib.2018.01.023

    CrossRef Google Scholar

    [3] Chen Y Z, Syvitski J P M, Gao S, et al. Socio‐economic impacts on flooding: a 4000‐year history of the Yellow River, China[J]. AMBIO, 2012, 41(7):682-698. doi: 10.1007/s13280-012-0290-5

    CrossRef Google Scholar

    [4] Kidder T R, Zhuang Y J. Anthropocene archaeology of the Yellow River, China, 5000-2000 BP[J]. The Holocene, 2015, 25(10):1627-1639. doi: 10.1177/0959683615594469

    CrossRef Google Scholar

    [5] Storozum M J, Qin Z, Ren X L, et al. The collapse of the North Song dynasty and the AD1048-1128 Yellow River floods: geoarchaeological evidence from northern Henan Province, China[J]. The Holocene, 2018, 28(11):1759-1770. doi: 10.1177/0959683618788682

    CrossRef Google Scholar

    [6] 张振克, 王苏民, 沈吉, 等. 黄河下游南四湖地区黄河河道变迁的湖泊沉积响应[J]. 湖泊科学, 1999, 11(3):231-236 doi: 10.18307/1999.0307

    CrossRef Google Scholar

    ZHANG Zhenke, WANG Sumin, SHEN Ji, et al. River channel changes recorded by lake sediments in Nansihu Lake, the lower reaches of the Yellow River[J]. Journal of Lake Sciences, 1999, 11(3):231-236.] doi: 10.18307/1999.0307

    CrossRef Google Scholar

    [7] 陈诗越, 侯战方, 陈影影, 等. 黄河下游地区湖泊沉积与环境[M]. 南京: 江苏凤凰科学技术出版社, 2017: 1-173

    Google Scholar

    CHEN Shiyue, HOU Zhanfang, CHEN Yingying, et al. Sedimentation and Environment of Lakes in the Lower Yellow River Region[M]. Nanjing: Jiangsu Phoenix Science and Technology Press, 2017: 1-173.]

    Google Scholar

    [8] 吴艳宏, 沈吉, 夏威岚, 等. 南四湖3000年来南北沉积差异[J]. 古地理学报, 1999, 1(2):78-83 doi: 10.3969/j.issn.1671-1505.1999.02.010

    CrossRef Google Scholar

    WU Yanhong, SHEN Ji, XIA Weilan, et al. Sedimentary difference between north and south Nansihu Lake, Shandong province[J]. Journal of Palaeogeography, 1999, 1(2):78-83.] doi: 10.3969/j.issn.1671-1505.1999.02.010

    CrossRef Google Scholar

    [9] 侯战方, 陈诗越, 孟静静, 等. 近1200 a来黄河下游梁山泊沉积记录的环境变迁[J]. 湖泊科学, 2018, 30(1):245-255 doi: 10.18307/2018.0124

    CrossRef Google Scholar

    HOU Zhanfang, CHEN Shiyue, MENG Jingjing, et al. Environmental changes in the lower reaches of Yellow River area during the last 1200 years revealed by multiple proxies from the Lake Liangshanpo[J]. Journal of Lake Sciences, 2018, 30(1):245-255.] doi: 10.18307/2018.0124

    CrossRef Google Scholar

    [10] 魏本杰, 侯战方, 陈诗越, 等. 黄河下游大野泽沉积物粒度特征及其对环境演化的指示[J]. 海洋地质与第四纪地质, 2019, 39(3):151-161

    Google Scholar

    WEI Benjie, HOU Zhanfang, CHEN Shiyue, et al. Grain-size characteristics of Dayeze lake sediments in the lower reach of Yellow River and their environmental implications[J]. Marine Geology & Quaternary Geology, 2019, 39(3):151-161.]

    Google Scholar

    [11] Chen Y Y, Chen S Y, Ma C M, et al. Palynological evidence of natural and anthropogenic impacts on aquatic environmental changes over the last 150 years in Dongping Lake, North China[J]. Quaternary International, 2014, 349:2-9. doi: 10.1016/j.quaint.2014.04.033

    CrossRef Google Scholar

    [12] 伏梦璇, 魏本杰, 衣雅男, 等. 黄河下游大野泽流域的侵蚀变化与气候演变[J]. 海洋湖沼通报, 2021, 43(3):8-16

    Google Scholar

    FU Mengxuan, WEI Benjie, YI Yanan, et al. Erosional changes and climatic evolution of the lake Dayeze in the lower Yellow River[J]. Transactions of Oceanology and Limnology, 2021, 43(3):8-16.]

    Google Scholar

    [13] Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1):38-41. doi: 10.1038/ngeo2602

    CrossRef Google Scholar

    [14] Zhang M, Xia J, Hong C. New challenges and opportunities for flood control in the Huai River: addressing a changing river‐lake relationship[J]. Bulletin of the Chinese Academy of Sciences, 2012, 26(1):40-47.

    Google Scholar

    [15] Yu L S, Liu H B, Wan F, et al. Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River, North China[J]. Journal of Groundwater Science and Engineering, 2021, 9(2):140-151.

    Google Scholar

    [16] Hu S Y, Deng C L, Appel E, et al. Environmental magnetic studies of lacustrine sediments[J]. Chinese Science Bulletin, 2002, 47(7):613-616. doi: 10.1360/02tb9141

    CrossRef Google Scholar

    [17] Thompson R, Oldfield F. Environmental Magnetism[M]. Dordrecht: Springer, 1986: 1-220.

    Google Scholar

    [18] Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 154:23-84. doi: 10.1016/j.quascirev.2016.08.004

    CrossRef Google Scholar

    [19] Liu Q S, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4):RG4002.

    Google Scholar

    [20] Orgeira M J, Egli R, Compagnucci R H. A quantitative model of magnetic enhancement in loessic soils[M]//Petrovský E, Ivers D, Harinarayana T, et al. The Earth's Magnetic Interior. Dordrecht: Springer, 2011: 361-397.

    Google Scholar

    [21] Liu Z F, Liu Q S, Torrent J, et al. Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China[J]. Global and Planetary Change, 2013, 110:368-378. doi: 10.1016/j.gloplacha.2013.04.013

    CrossRef Google Scholar

    [22] Nie J S, Song Y G, King J W, et al. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during~ 4.5-2.6 Ma[J]. Quaternary Research, 2013, 79(3):465-470. doi: 10.1016/j.yqres.2013.01.002

    CrossRef Google Scholar

    [23] Hatfield R G, Stoner J S, Reilly B T, et al. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record[J]. Earth and Planetary Science Letters, 2017, 474:474-489. doi: 10.1016/j.jpgl.2017.06.042

    CrossRef Google Scholar

    [24] Liu Q S, Roberts A P, Torrent J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09011.

    Google Scholar

    [25] Roberts A P, Zhao X, Heslop D, et al. Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward[J]. Geoscience Letters, 2020, 7(1):8. doi: 10.1186/s40562-020-00157-5

    CrossRef Google Scholar

    [26] Carter‐Stiglitz B, Moskowitz B, Solheid P, et al. Low‐temperature magnetic behavior of multidomain titanomagnetites: TM0, TM16, and TM35[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B12):B12S05.

    Google Scholar

    [27] Chang L, Heslop D, Roberts A P, et al. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1):3-14. doi: 10.1002/2015JB012485

    CrossRef Google Scholar

    [28] Egli R. Analysis of the field dependence of remanent magnetization curves[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2):2081.

    Google Scholar

    [29] Jackson M, Solheid P. On the quantitative analysis and evaluation of magnetic hysteresis data[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4):Q04Z15.

    Google Scholar

    [30] Dunlop D J. Theory and application of the Day plot (M rs/M s versus H cr/H c) 1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3):2056.

    Google Scholar

    [31] 秦华峰, 刘青松, 潘永信. 一阶反转曲线(FORC)图的原理及应用实例[J]. 地球物理学报, 2008, 51(3):743-751 doi: 10.3321/j.issn:0001-5733.2008.03.015

    CrossRef Google Scholar

    QIN Huafeng, LIU Qingsong, PAN Yongxin. The first-order reversal curve (FORC) diagram: theory and case study[J]. Chinese Journal of Geophysics, 2008, 51(3):743-751.] doi: 10.3321/j.issn:0001-5733.2008.03.015

    CrossRef Google Scholar

    [32] Roberts A P, Heslop D, Zhao X, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4):557-602. doi: 10.1002/2014RG000462

    CrossRef Google Scholar

    [33] Ilse S E, Groß F, Schütz G, et al. Understanding the interaction of soft and hard magnetic components in NdFeB with first-order reversal curves[J]. Physical Review B, 2021, 103(2):024425. doi: 10.1103/PhysRevB.103.024425

    CrossRef Google Scholar

    [34] Heslop D, Roberts A P. A method for unmixing magnetic hysteresis loops[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3):B03103.

    Google Scholar

    [35] Heslop D. Numerical strategies for magnetic mineral unmixing[J]. Earth-Science Reviews, 2015, 150:256-284. doi: 10.1016/j.earscirev.2015.07.007

    CrossRef Google Scholar

    [36] Maxbauer D P, Feinberg J M, Fox D L. MAX UnMix: a web application for unmixing magnetic coercivity distributions[J]. Computers & Geosciences, 2016, 95:140-145.

    Google Scholar

    [37] 白帆, 常燎, 薛鹏飞, 等. 等温剩磁曲线分解方法及其批量处理工具BatchUnMix[J]. 地球物理学报, 2022, 65(12):4789-4801 doi: 10.6038/cjg2022Q0232

    CrossRef Google Scholar

    BAI Fan, CHANG Liao, XUE Pengfei, et al. Decomposing isothermal remanent curves and development of a batch processing tool BatchUnMix[J]. Chinese Journal of Geophysics, 2022, 65(12):4789-4801.] doi: 10.6038/cjg2022Q0232

    CrossRef Google Scholar

    [38] Harrison R J, Muraszko J, Heslop D, et al. An improved algorithm for unmixing first-order reversal curve diagrams using principal component analysis[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5):1595-1610. doi: 10.1029/2018GC007511

    CrossRef Google Scholar

    [39] Roberts A P, Heslop D, Zhao X, et al. Unlocking information about fine magnetic particle assemblages from first-order reversal curve diagrams: recent advances[J]. Earth-Science Reviews, 2022, 227:103950. doi: 10.1016/j.earscirev.2022.103950

    CrossRef Google Scholar

    [40] Zhang R, Necula C, Heslop D, et al. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence[J]. Scientific Reports, 2016, 6(1):29515. doi: 10.1038/srep29515

    CrossRef Google Scholar

    [41] Bellon U D, Trindade R I F, Williams W. Unmixing of magnetic hysteresis loops through a modified gamma‐Cauchy exponential model[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(8):e2023GC011048. doi: 10.1029/2023GC011048

    CrossRef Google Scholar

    [42] Wu D, Zhou A F, Chen X M, et al. Hydrological and ecosystem response to abrupt changes in the Indian monsoon during the last glacial, as recorded by sediments from Xingyun Lake, Yunnan, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421:15-23. doi: 10.1016/j.palaeo.2015.01.005

    CrossRef Google Scholar

    [43] Lisé-Pronovost A, St-Onge G, Gogorza C, et al. Rock-magnetic proxies of wind intensity and dust since 51, 200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia[J]. Earth and Planetary Science Letters, 2015, 411:72-86. doi: 10.1016/j.jpgl.2014.11.007

    CrossRef Google Scholar

    [44] Zhong W, Wei Z Q, Shang S T, et al. A 15, 400-year record of environmental magnetic variations in sub-alpine lake sediments from the western Nanling Mountains in South China: implications for palaeoenvironmental changes[J]. Journal of Asian Earth Sciences, 2018, 154:82-92. doi: 10.1016/j.jseaes.2017.12.005

    CrossRef Google Scholar

    [45] Fu H, Li M K, Bao K S, et al. Environment change recorded by lake sediment magnetism in the Songnen Plain, northeastern China[J]. Science of the Total Environment, 2024, 919:170938. doi: 10.1016/j.scitotenv.2024.170938

    CrossRef Google Scholar

    [46] 张汉洁. 黄河下游山东段古湖泽的变迁[J]. 人民黄河, 1987(5):67-69

    Google Scholar

    ZHANG Hanjie. Process of lakes along the lower Yellow River in ancient time[J]. Yellow River, 1987(5):67-69.]

    Google Scholar

    [47] 喻宗仁, 窦素珍, 赵培才, 等. 山东东平湖的变迁与黄河改道的关系[J]. 古地理学报, 2004, 6(4):469-479 doi: 10.3969/j.issn.1671-1505.2004.04.009

    CrossRef Google Scholar

    YU Zongren, DOU Suzhen, ZHAO Peicai, et al. Relationship between changes of Dongping Lake and shifting of the Yellow River in Shandong Province[J]. Journal of Palaeogeography, 2004, 6(4):469-479.] doi: 10.3969/j.issn.1671-1505.2004.04.009

    CrossRef Google Scholar

    [48] 吕鸿燕, 祁德丽, 蒋雯, 等. 基于4G物联网卡的黄墩湖滞洪区远程视频监控系统应用探讨[J]. 治淮, 2019(3):28-29 doi: 10.3969/j.issn.1001-9243.2019.03.016

    CrossRef Google Scholar

    LV Hongyan, QI Deli, JIANG Wen, et al. Discussion on the application of remote video monitoring system in Huangdun Lake flood detention area based on 4G IoT Card[J]. Harnessing the Huaihe River, 2019(3):28-29.] doi: 10.3969/j.issn.1001-9243.2019.03.016

    CrossRef Google Scholar

    [49] 杨迈里, 王云飞. 骆马湖的成因与演变[J]. 湖泊科学, 1989, 1(1):37-44 doi: 10.18307/1989.0105

    CrossRef Google Scholar

    YANG Maili, WANG Yunfei. The origin and evolution of Luoma Lake[J]. Scientia Limnologica Sinica, 1989, 1(1):37-44.] doi: 10.18307/1989.0105

    CrossRef Google Scholar

    [50] Xue C T. Historical changes in the Yellow River delta, China[J]. Marine Geology, 1993, 113(3-4):321-330. doi: 10.1016/0025-3227(93)90025-Q

    CrossRef Google Scholar

    [51] 江苏省地方志编纂委员会. 江苏江河湖泊志[M]. 南京: 江苏凤凰教育出版社, 2019

    Google Scholar

    Jiangsu Provincial Local Chronicles Compilation Committee. Records of Rivers and Lakes in Jiangsu[M]. Nanjing: Jiangsu Phoenix Education Publishing House, 2019.]

    Google Scholar

    [52] Zhang R, Xing L, Yu S Y, et al. Holocene overflow events of the lower Yellow River recorded in Huangdun ancient lake, northern Jiangsu Plain, China[J]. Journal of Quaternary Science, 2024, 39(3):443-456. doi: 10.1002/jqs.3599

    CrossRef Google Scholar

    [53] Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6):723-741. doi: 10.1007/s11004-015-9611-0

    CrossRef Google Scholar

    [54] Roberts A P, Hu P X, Harrison R J, et al. Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the day diagram[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6):5286-5314. doi: 10.1029/2018JB017049

    CrossRef Google Scholar

    [55] Tauxe L, Bertram H N, Seberino C. Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10):1055.

    Google Scholar

    [56] Lascu I, Banerjee S K, Berquó T S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8):Q08Z19.

    Google Scholar

    [57] Egli R, Chen A P, Winklhofer M, et al. Detection of noninteracting single domain particles using first‐order reversal curve diagrams[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1):Q01Z11.

    Google Scholar

    [58] Spassov S, Heller F, Kretzschmar R, et al. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau)[J]. Physics of the Earth and Planetary Interiors, 2003, 140(4):255-275. doi: 10.1016/j.pepi.2003.09.003

    CrossRef Google Scholar

    [59] Egli R. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments[J]. Studia Geophysica et Geodaetica, 2004, 48(2):391-446. doi: 10.1023/B:SGEG.0000020839.45304.6d

    CrossRef Google Scholar

    [60] Xue P F, Chang L, Pei Z W, et al. Discovery of giant magnetofossils within and outside of the Palaeocene-Eocene Thermal Maximum in the North Atlantic[J]. Earth and Planetary Science Letters, 2022, 584:117417. doi: 10.1016/j.jpgl.2022.117417

    CrossRef Google Scholar

    [61] Hartstra R L. Grain-size dependence of initial susceptibility and saturation magnetization -related parameters of four natural magnetites in the PSD-MD range[J]. Geophysical Journal International, 1982, 71(2):477-495. doi: 10.1111/j.1365-246X.1982.tb05998.x

    CrossRef Google Scholar

    [62] Franco V, Dodrill B. Magnetic Measurement Techniques for Materials Characterization[M]. Cham: Springer, 2021: 1-805.

    Google Scholar

    [63] Smirnov A V. Low-temperature magnetic properties of magnetite using first-order reversal curve analysis: implications for the pseudo-single-domain state[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(11):Q11011.

    Google Scholar

    [64] Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16-19):659-667. doi: 10.1016/S1474-7065(03)00120-7

    CrossRef Google Scholar

    [65] Huang C C, Pang J L, Zha X C, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30(3-4):460-468. doi: 10.1016/j.quascirev.2010.12.007

    CrossRef Google Scholar

    [66] Yu S Y, Li W J, Zhou L, et al. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 2023, 9(8):eadf8576. doi: 10.1126/sciadv.adf8576

    CrossRef Google Scholar

    [67] Xie L Y, Daudjee Z, Liu C F, et al. Settlement relocation, urban construction, and social transformation in China's central plain, 2300-1500 B. C[J]. Asian Perspectives, 2020, 59(2):299-329. doi: 10.1353/asi.2020.0016

    CrossRef Google Scholar

    [68] Chen Y Z. Flood dynamics of the lower Yellow River over the last 3000 years: characteristics and implications for geoarchaeology[J]. Quaternary International, 2019, 521:147-157. doi: 10.1016/j.quaint.2019.05.040

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(539) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint