2024 Vol. 44, No. 5
Article Contents

LIU Jiaao, WU Yonghua, LIU Shengfa, QIAO Shuqing, TAO Jing, QI Wenjing, LIU Jihua. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 189-201. doi: 10.16562/j.cnki.0256-1492.2024022801
Citation: LIU Jiaao, WU Yonghua, LIU Shengfa, QIAO Shuqing, TAO Jing, QI Wenjing, LIU Jihua. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 189-201. doi: 10.16562/j.cnki.0256-1492.2024022801

Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period

More Information
  • Variations in the oxygen content of water column in the Arabian Sea since the Last Glacial Period have significant differences in space and time. However, regarding the spatial variation patterns and dominating factors, systematic studies are scarce, especially on the mechanism of changes in oxygen content in deep water and the controlling factors on a millennial scale. Based on XRF core scanning results from two cores, WIND-CJ06-6 and WIND-CJ06-13, in the central deep water of the Arabian Sea and previously published data, we reconstructed the processes and analyzed the drivers of the variations in oxygen content in the Arabian Sea in different areas and depths on millennial scale since the Last Glacial Period. Results show that the variations in oxygen content in the Arabian Sea in water depths less than 1500 m on the millennial scale are controlled jointly by the surface primary productivity and mesopelagic water fluxes, and the dominant factors varied in different periods. Surface productivity in the northwestern part of the Arabian Sea was significantly higher than that in the rest of the sea during the transition period from B/A (Bølling-Ållerød) to YD (Younger Dryas) events, resulting in spatial difference: the oxygen content in the intermediate water was high in the NW Arabian Sea but low in the rest of the sea. The oxygen content in water column in the Arabian Sea at depths greater than 1500 m was mainly controlled by the strength of the North Atlantic Deep Water (NADW) since the Last Glacial Maximum (LGM), and the oxygen content in water was significantly increased due to enhanced ventilation in the Southern Ocean from the LGM to the HS1 (Heinrich Stadial 1) stage.

  • 加载中
  • [1] Codispoti L A, Christensen J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean[J]. Marine Chemistry, 1985, 16(4):277-300. doi: 10.1016/0304-4203(85)90051-9

    CrossRef Google Scholar

    [2] Bunzel D, Schmiedl G, Lindhorst S, et al. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea[J]. Climate of the Past, 2017, 13(12):1791-1813. doi: 10.5194/cp-13-1791-2017

    CrossRef Google Scholar

    [3] Majumder J, Gupta A K, Kumar P, et al. Late Quaternary variations in the Oxygen Minimum Zone linked to monsoon shifts as seen in the sediment of the outer continental shelf of the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 591:110891. doi: 10.1016/j.palaeo.2022.110891

    CrossRef Google Scholar

    [4] Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.

    Google Scholar

    [5] Singh A D, Holbourn A, Kuhnt W. Editorial preface to special issue: recent advances in Indian Ocean paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111443. doi: 10.1016/j.palaeo.2023.111443

    CrossRef Google Scholar

    [6] Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203

    CrossRef Google Scholar

    [7] Lachkar Z, Lévy M, Smith S. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity[J]. Biogeosciences, 2018, 15(1):159-186. doi: 10.5194/bg-15-159-2018

    CrossRef Google Scholar

    [8] Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0

    CrossRef Google Scholar

    [9] Zhou X Q, Duchamp-Alphonse S, Kageyama M, et al. Variations of primary productivity in the northwestern Arabian sea during the last 23, 000 years and their paleoclimatological implications[J]. Paleoceanography and Paleoclimatology, 2022, 37(10):e2022PA004453. doi: 10.1029/2022PA004453

    CrossRef Google Scholar

    [10] Banakar V K, Oba T, Chodankar A R, et al. Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle[J]. Marine Geology, 2005, 219(2-3):99-108. doi: 10.1016/j.margeo.2005.05.004

    CrossRef Google Scholar

    [11] Schulte S, Rostek F, Bard E, et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173(3):205-221. doi: 10.1016/S0012-821X(99)00232-0

    CrossRef Google Scholar

    [12] Lu W Y, Costa K M, Oppo D W. Reconstructing the oxygen depth profile in the arabian sea during the last glacial Period[J]. Paleoceanography and Paleoclimatology, 2023, 38(6):e2023PA004632. doi: 10.1029/2023PA004632

    CrossRef Google Scholar

    [13] Singh A D, Rai A K, Verma K, et al. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP[J]. Quaternary International, 2015, 374:118-125. doi: 10.1016/j.quaint.2014.11.052

    CrossRef Google Scholar

    [14] Ivanochko T S, Ganeshram R S, Brummer G J A, et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale[J]. Earth and Planetary Science Letters, 2005, 235(1-2):302-314. doi: 10.1016/j.jpgl.2005.04.002

    CrossRef Google Scholar

    [15] Altabet M A, Francois R, Murray D W, et al. Climate-related variations in denitrification in the Arabian sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514):506-509. doi: 10.1038/373506a0

    CrossRef Google Scholar

    [16] Burdanowitz N, Schmiedl G, Gaye B, et al. Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years - a multi-proxy approach[J]. Biogeosciences, 2024, 21(6):1477-1499. doi: 10.5194/bg-21-1477-2024

    CrossRef Google Scholar

    [17] Sarkar A, Bhattacharya S K, Sarin M M. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):1009-1016. doi: 10.1016/0016-7037(93)90036-V

    CrossRef Google Scholar

    [18] Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    CrossRef Google Scholar

    [19] Chandana K R, Bhushan R, Jull A J T. Evidence of poor bottom water ventilation during LGM in the equatorial Indian Ocean[J]. Frontiers in Earth Science, 2017, 5:84. doi: 10.3389/feart.2017.00084

    CrossRef Google Scholar

    [20] Mir I A, Mascarenhas M B L. Redox Changes during the past 100 ka in the deeper eastern Arabian sea: a study based on trace elements and multivariate statistical analysis[J]. Water, 2023, 15(7):1252. doi: 10.3390/w15071252

    CrossRef Google Scholar

    [21] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2012, 5(2):151-156. doi: 10.1038/ngeo1352

    CrossRef Google Scholar

    [22] Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8-9):1903-1931. doi: 10.1016/S0967-0645(99)00048-X

    CrossRef Google Scholar

    [23] Olson D B, Hitchcock G L, Fine R A, et al. Maintenance of the low-oxygen layer in the central Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(3):673-685. doi: 10.1016/0967-0645(93)90051-N

    CrossRef Google Scholar

    [24] Swallow J C. Some aspects of the physical oceanography of the Indian Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(6-8):639-650. doi: 10.1016/0198-0149(84)90032-3

    CrossRef Google Scholar

    [25] Gupta A K, Srinivasan M S. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP site 214 during the Late Neogene[J]. Marine Micropaleontology, 1992, 19(4):355-367. doi: 10.1016/0377-8398(92)90038-L

    CrossRef Google Scholar

    [26] You Y Z. Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions[J]. Journal of Marine Research, 1998, 56(5):1029-1067. doi: 10.1357/002224098765173455

    CrossRef Google Scholar

    [27] Mantyla A W, Reid J L. Abyssal characteristics of the World Ocean waters[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(8):805-833. doi: 10.1016/0198-0149(83)90002-X

    CrossRef Google Scholar

    [28] Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938. doi: 10.1038/35016049

    CrossRef Google Scholar

    [29] Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007

    CrossRef Google Scholar

    [30] Johnson G C, Warren B A, Olson D B. A deep boundary current in the Arabian Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):653-661. doi: 10.1016/0198-0149(91)90004-Y

    CrossRef Google Scholar

    [31] Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564

    CrossRef Google Scholar

    [32] McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150 000 years[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1826):81-99. doi: 10.1098/rsta.2004.1480

    CrossRef Google Scholar

    [33] Thomas A L, Henderson G M, Robinson L F. Interpretation of the 231Pa/230Th paleocirculation proxy: new water-column measurements from the southwest Indian Ocean[J]. Earth and Planetary Science Letters, 2006, 241(3-4):493-504. doi: 10.1016/j.jpgl.2005.11.031

    CrossRef Google Scholar

    [34] He Z T, Qiao S Q, Jin L A, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741

    CrossRef Google Scholar

    [35] Reid J L. On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports[J]. Progress in Oceanography, 2003, 56(1):137-186. doi: 10.1016/S0079-6611(02)00141-6

    CrossRef Google Scholar

    [36] Ma R F, Sépulcre S, Licari L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8):1757-1774. doi: 10.5194/cp-18-1757-2022

    CrossRef Google Scholar

    [37] Schott F A, Mccreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1):1-123. doi: 10.1016/S0079-6611(01)00083-0

    CrossRef Google Scholar

    [38] Garcia H E, Weathers K W, Paver C R, et al. World Ocean Atlas 2018, volume 3: dissolved oxygen, apparent oxygen utilization, and dissolved oxygen saturation[R]. Silver Spring: NOAA Atlas NESDIS, 2019.

    Google Scholar

    [39] Callahan J E. The structure and circulation of deep water in the Antarctic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(8):563-575. doi: 10.1016/0011-7471(72)90040-X

    CrossRef Google Scholar

    [40] Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8:85-114.

    Google Scholar

    [41] Reid J L, Lynn R J. On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans[J]. Deep Sea Research and Oceanographic Abstracts, 1971, 18(11):1063-1088. doi: 10.1016/0011-7471(71)90094-5

    CrossRef Google Scholar

    [42] Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022

    CrossRef Google Scholar

    [43] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4):779-820. doi: 10.1017/RDC.2020.68

    CrossRef Google Scholar

    [44] Dahl K A, Oppo D W. Sea surface temperature pattern reconstructions in the Arabian Sea[J]. Paleoceanography, 2006, 21(1):PA1014.

    Google Scholar

    [45] Agnihotri R, Sarin M M, Somayajulu B L K, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1-2):43-60. doi: 10.1016/S0031-0182(03)00385-7

    CrossRef Google Scholar

    [46] Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica et Cosmochimica Acta, 2002, 66(5):849-865. doi: 10.1016/S0016-7037(01)00817-1

    CrossRef Google Scholar

    [47] Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea[J]. Paleoceanography, 2007, 22(4):PA4208.

    Google Scholar

    [48] Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments[J]. Paleoceanography, 1990, 5(2):109-145. doi: 10.1029/PA005i002p00109

    CrossRef Google Scholar

    [49] Godad S P, Naik S S, Naidu P D. 70 kyr record of denitrification and oxygenation changes in the eastern Arabian Sea[J]. Geochemical Journal, 2017, 51(4):329-336. doi: 10.2343/geochemj.2.0472

    CrossRef Google Scholar

    [50] Schmiedl G, Mackensen A. Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea[J]. Paleoceanography, 2006, 21(4):PA4213.

    Google Scholar

    [51] Ganeshram R S, Pedersen T F, Calvert S E, et al. Glacial-interglacial variability in denitrification in the world's oceans: causes and consequences[J]. Paleoceanography, 2000, 15(4):361-376. doi: 10.1029/1999PA000422

    CrossRef Google Scholar

    [52] Den Dulk M, Reichart G J, Memon G M, et al. Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35(1-2):43-66. doi: 10.1016/S0377-8398(98)00015-2

    CrossRef Google Scholar

    [53] Singh A D, Jung S J A, Anand P, et al. Rapid switch in monsoon-wind induced surface hydrographic conditions of the eastern Arabian Sea during the last deglaciation[J]. Quaternary International, 2018, 479:3-11. doi: 10.1016/j.quaint.2018.03.027

    CrossRef Google Scholar

    [54] Reichart G J, Schenau S J, De Lange G J, et al. Erratum to “Synchroneity of oxygen minimum zone intensity on the Oman and Pakistan Margins at sub-Milankovitch time scales”: [Marine Geology 185 (2002) 283–302][J]. Marine Geology, 2002, 192(4):437-438. doi: 10.1016/S0025-3227(02)00563-7

    CrossRef Google Scholar

    [55] Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6868):159-162. doi: 10.1038/415159a

    CrossRef Google Scholar

    [56] Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5

    CrossRef Google Scholar

    [57] Lu W Y, Wang Y, Oppo D W, et al. Comparing paleo-oxygenation proxies (benthic foraminiferal surface porosity, I/Ca, authigenic uranium) on modern sediments and the glacial Arabian Sea[J]. Geochimica et Cosmochimica Acta, 2022, 331:69-85. doi: 10.1016/j.gca.2022.06.001

    CrossRef Google Scholar

    [58] Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E

    CrossRef Google Scholar

    [59] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [60] Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593

    CrossRef Google Scholar

    [61] Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1):103-116. doi: 10.1029/93GB03396

    CrossRef Google Scholar

    [62] Glock N, Erdem Z, Schönfeld J. The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene[J]. Communications Earth & Environment, 2022, 3(1):307.

    Google Scholar

    [63] Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera[J]. Scientific Reports, 2018, 8(1):9456. doi: 10.1038/s41598-018-27793-4

    CrossRef Google Scholar

    [64] de Stigter H C. Recent and fossil benthic foraminifera in the Adriatic Sea: distribution patterns in relation to organic carbon flux and oxygen concentration at the seabed[D]. Utrecht: University Utrecht, 1996.

    Google Scholar

    [65] Gooday A J, Bernhard J M, Levin L A, et al. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(1-2):25-54. doi: 10.1016/S0967-0645(99)00099-5

    CrossRef Google Scholar

    [66] Rohling E J, Zachariasse W J. Red Sea outflow during the last glacial maximum[J]. Quaternary International, 1996, 31:77-83. doi: 10.1016/1040-6182(95)00023-C

    CrossRef Google Scholar

    [67] Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874. doi: 10.1038/ngeo360

    CrossRef Google Scholar

    [68] Ziegler M, Lourens L J, Tuenter E, et al. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation[J]. Paleoceanography, 2010, 25(3):PA3213.

    Google Scholar

    [69] Naik D K, Saraswat R, Lea D W, et al. Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483:147-156. doi: 10.1016/j.palaeo.2016.07.014

    CrossRef Google Scholar

    [70] Tierney J E, Zhu J, King J, et al. Glacial cooling and climate sensitivity revisited[J]. Nature, 2020, 584(7822):569-573. doi: 10.1038/s41586-020-2617-x

    CrossRef Google Scholar

    [71] Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P[J]. Geophysical Research Letters, 2015, 42(13):5526-5532. doi: 10.1002/2015GL064015

    CrossRef Google Scholar

    [72] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    CrossRef Google Scholar

    [73] Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?[J]. Geophysical Research Letters, 2009, 36(12):L12601.

    Google Scholar

    [74] Reichart G J, Den Dulk M, Visser H J, et al. A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134(1-4):149-169. doi: 10.1016/S0031-0182(97)00071-0

    CrossRef Google Scholar

    [75] Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006

    CrossRef Google Scholar

    [76] Ödalen M, Nycander J, Oliver K I C, et al. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model[J]. Biogeosciences, 2018, 15(5):1367-1393. doi: 10.5194/bg-15-1367-2018

    CrossRef Google Scholar

    [77] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F

    CrossRef Google Scholar

    [78] Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766

    CrossRef Google Scholar

    [79] Nisha K, Naik S S, Kumar P, et al. Radiocarbon evidence for reduced deep water ventilation of the northern Indian Ocean during the last glacial maxima and early deglaciation[J]. Earth and Planetary Science Letters, 2023, 607:118067. doi: 10.1016/j.jpgl.2023.118067

    CrossRef Google Scholar

    [80] Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1-2):244-254. doi: 10.1016/j.jpgl.2010.08.025

    CrossRef Google Scholar

    [81] Pérez-Asensio J N, Tachikawa K, Vidal L, et al. Glacial expansion of carbon-rich deep waters into the Southwestern Indian Ocean over the last 630 kyr[J]. Global and Planetary Change, 2023, 230:104283. doi: 10.1016/j.gloplacha.2023.104283

    CrossRef Google Scholar

    [82] Gebbie G. How much did glacial North Atlantic water shoal?[J]. Paleoceanography, 2014, 29(3):190-209. doi: 10.1002/2013PA002557

    CrossRef Google Scholar

    [83] Oppo D W, Gebbie G, Huang K F, et al. Data constraints on glacial Atlantic water mass geometry and properties[J]. Paleoceanography and Paleoclimatology, 2018, 33(9):1013-1034. doi: 10.1029/2018PA003408

    CrossRef Google Scholar

    [84] Cliff E, Khatiwala S, Schmittner A. Glacial deep ocean deoxygenation driven by biologically mediated air-sea disequilibrium[J]. Nature Geoscience, 2021, 14(1):43-50. doi: 10.1038/s41561-020-00667-z

    CrossRef Google Scholar

    [85] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920):1443-1448. doi: 10.1126/science.1167441

    CrossRef Google Scholar

    [86] Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982):1147-1151. doi: 10.1126/science.1183627

    CrossRef Google Scholar

    [87] Wang Y, Costa K M, Lu W Y, et al. Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation[J]. Science Advances, 2024, 10(3):eadk2506. doi: 10.1126/sciadv.adk2506

    CrossRef Google Scholar

    [88] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(348) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint