2025 Vol. 45, No. 3
Article Contents

PIAN Zeyu, SU Lei, ZHANG Yan, WANG Peng, LI Jiangtao. Research progress on microbial diversity in seafloor hydrothermal chimneys[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 72-82. doi: 10.16562/j.cnki.0256-1492.2024032601
Citation: PIAN Zeyu, SU Lei, ZHANG Yan, WANG Peng, LI Jiangtao. Research progress on microbial diversity in seafloor hydrothermal chimneys[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 72-82. doi: 10.16562/j.cnki.0256-1492.2024032601

Research progress on microbial diversity in seafloor hydrothermal chimneys

More Information
  • Seafloor hydrothermal vents serve as crucial conduits for material and energy exchange between the Earth's interior and the ocean, with their geological background playing a pivotal role in determining the chemical composition of the expelled fluid. Hydrothermal chimney stands as a quintessential structural and ecological unit within submarine hydrothermal vents, housing a diverse array of microbial groups with varying physiological functions. These microorganisms can use the chemical imbalance between high-temperature hydrothermal solution and low-temperature seawater or through weathering of various sulfide minerals to obtain the energy necessary to maintain their metabolism, and they are selectively distributed in various ecological niches in the chimney body along big environmental gradients of temperature, pH, Eh, and reducing compound concentration. Through high-throughput sequencing and omics analysis, it has been revealed that the nutrient metabolism types driving microbial life processes within the chimney encompass sulfur oxidation, sulfur reduction, methane oxidation, methane production, hydrogen nutrition, iron oxidation, nitrification and denitrification, and various other chemoautotrophic metabolic pathways, which suggests their potential significance in shaping the global element cycle. This paper provides a comprehensive and systematic overview of the microbiomes present in hydrothermal chimneys worldwide, including their distribution characteristics and variation patterns, contributing to the comprehensive and systematic understanding on hydrothermal microbial survival strategies, environmental adaptation mechanisms, and geochemical cycles involving hydrothermal microorganisms.

  • 加载中
  • [1] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the galápagos rift[J]. Science, 1979, 203(4385):1073-1083. doi: 10.1126/science.203.4385.1073

    CrossRef Google Scholar

    [2] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research, 1977, 24(9):857-863. doi: 10.1016/0146-6291(77)90478-7

    CrossRef Google Scholar

    [3] Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11):805-814. doi: 10.1038/nrmicro1991

    CrossRef Google Scholar

    [4] Cavanaugh C M. Microbial symbiosis: patterns of diversity in the marine environment[J]. American Zoologist, 1994, 34(1):79-89. doi: 10.1093/icb/34.1.79

    CrossRef Google Scholar

    [5] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30:385-491. doi: 10.1146/annurev.earth.30.091201.141331

    CrossRef Google Scholar

    [6] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296(5570):1077-1082. doi: 10.1126/science.1072483

    CrossRef Google Scholar

    [7] Kristall B, Kelley D S, Hannington M D, et al. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(7):Q07001.

    Google Scholar

    [8] Tivey M K. How to build a black smoker chimney[J]. Oceanus, 1998, 41(2):22-26.

    Google Scholar

    [9] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000

    CrossRef Google Scholar

    [10] Seyfried W E Jr, Pester N J, Tutolo B M, et al. The Lost City hydrothermal system: constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes[J]. Geochimica et Cosmochimica Acta, 2015, 163:59-79. doi: 10.1016/j.gca.2015.04.040

    CrossRef Google Scholar

    [11] Aquino K A, Früh-Green G L, Rickli J, et al. Multi-stage evolution of the Lost City hydrothermal vent fluids[J]. Geochimica et Cosmochimica Acta, 2022, 332:239-262. doi: 10.1016/j.gca.2022.06.027

    CrossRef Google Scholar

    [12] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3625-3645. doi: 10.1016/j.gca.2006.04.016

    CrossRef Google Scholar

    [13] Aquino K A, Frueh-Green G L, Bernasconi S M, et al. Controls on mineral formation in high pH fluids from the Lost City Hydrothermal field[J]. Geochemistry Geophysics Geosystems, 2024, 25(2):e2023GC011010. doi: 10.1029/2023GC011010

    CrossRef Google Scholar

    [14] Olins H C, Rogers D R, Frank K L, et al. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys[J]. Geobiology, 2013, 11(3):279-293. doi: 10.1111/gbi.12034

    CrossRef Google Scholar

    [15] Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future[J]. Oceanography, 2012, 25(1):218-233. doi: 10.5670/oceanog.2012.21

    CrossRef Google Scholar

    [16] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR)[J]. Chemical Geology, 2002, 191(4):345-359. doi: 10.1016/S0009-2541(02)00134-1

    CrossRef Google Scholar

    [17] Adam N, Perner M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents[J]. Frontiers in Microbiology, 2018, 9:2873. doi: 10.3389/fmicb.2018.02873

    CrossRef Google Scholar

    [18] Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents[J]. Marine Life Science & Technology, 2021, 3(2):204-230.

    Google Scholar

    [19] Li J T, Cui J M, Yang Q H, et al. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney[J]. Frontiers in Microbiology, 2017, 8:1378. doi: 10.3389/fmicb.2017.01378

    CrossRef Google Scholar

    [20] McCliment E A, Voglesonger K M, O'Day P A, et al. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage[J]. Environmental Microbiology, 2006, 8(1):114-125. doi: 10.1111/j.1462-2920.2005.00874.x

    CrossRef Google Scholar

    [21] Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology, 2003, 69(6):3580-3592. doi: 10.1128/AEM.69.6.3580-3592.2003

    CrossRef Google Scholar

    [22] Li J T, Zhou H Y, Fang J S, et al. Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney[J]. Marine Ecology Progress Series, 2014, 508:67-85. doi: 10.3354/meps10841

    CrossRef Google Scholar

    [23] Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. mBio, 2012, 3(1):e00279-11.

    Google Scholar

    [24] Hou J L, Sievert S M, Wang Y Z, et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys[J]. Microbiome, 2020, 8(1):102. doi: 10.1186/s40168-020-00851-8

    CrossRef Google Scholar

    [25] Zhou H Y, Li J T, Peng X T, et al. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge[J]. The Journal of Microbiology, 2009, 47(3):235-247. doi: 10.1007/s12275-008-0311-z

    CrossRef Google Scholar

    [26] Suzuki Y, Inagaki F, Takai K, et al. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems[J]. Microbial Ecology, 2004, 47(2):186-196. doi: 10.1007/s00248-003-1014-y

    CrossRef Google Scholar

    [27] Christakis C A, Polymenakou P N, Mandalakis M, et al. Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc[J]. Extremophiles, 2018, 22(1):13-27. doi: 10.1007/s00792-017-0971-x

    CrossRef Google Scholar

    [28] Meier D V, Pjevac P, Bach W, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses[J]. Environmental Microbiology, 2019, 21(2):682-701. doi: 10.1111/1462-2920.14514

    CrossRef Google Scholar

    [29] Meier D V, Pjevac P, Bach W, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents[J]. The ISME Journal, 2017, 11(7):1545-1558. doi: 10.1038/ismej.2017.37

    CrossRef Google Scholar

    [30] Wang Y, Bi H Y, Chen H G, et al. Metagenomics reveals dominant unusual sulfur oxidizers inhabiting active hydrothermal chimneys from the southwest Indian Ridge[J]. Frontiers in Microbiology, 2022, 13:861795. doi: 10.3389/fmicb.2022.861795

    CrossRef Google Scholar

    [31] Früh-Green G L, Kelley D S, Lilley M D, et al. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges[J]. Nature Reviews Earth & Environment, 2022, 3(12):852-871.

    Google Scholar

    [32] Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10):1933-1949. doi: 10.1016/0016-7037(95)00118-2

    CrossRef Google Scholar

    [33] McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61(20):4375-4391. doi: 10.1016/S0016-7037(97)00241-X

    CrossRef Google Scholar

    [34] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1):50-65. doi: 10.5670/oceanog.2007.80

    CrossRef Google Scholar

    [35] Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology, 2008, 36(8):615-618. doi: 10.1130/G24726A.1

    CrossRef Google Scholar

    [36] Luther III G W, Gartman A, Yücel M, et al. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: comparison of two geologically distinct ridge systems[J]. Oceanography, 2012, 25(1):234-245. doi: 10.5670/oceanog.2012.22

    CrossRef Google Scholar

    [37] Orcutt B N, Sylvan J B, Knab N J, et al. Microbial Ecology of the Dark Ocean above, at, and below the Seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2):361-422. doi: 10.1128/MMBR.00039-10

    CrossRef Google Scholar

    [38] Amend J P, McCollom T M, Hentscher M, et al. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types[J]. Geochimica et Cosmochimica Acta, 2011, 75(19):5736-5748. doi: 10.1016/j.gca.2011.07.041

    CrossRef Google Scholar

    [39] McCollom T M. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems[J]. Astrobiology, 2007, 7(6):933-950. doi: 10.1089/ast.2006.0119

    CrossRef Google Scholar

    [40] Holden J F, Breier J A, Rogers K L, et al. Biogeochemical processes at hydrothermal vents: microbes and minerals, bioenergetics, and carbon fluxes[J]. Oceanography, 2012, 25(1):196-208. doi: 10.5670/oceanog.2012.18

    CrossRef Google Scholar

    [41] Lilley M D, Butterfield D A, Olson E J, et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system[J]. Nature, 1993, 364(6432):45-47. doi: 10.1038/364045a0

    CrossRef Google Scholar

    [42] Zhou Z C, John E S, Anantharaman K, et al. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits[J]. Microbiome, 2022, 10(1):241. doi: 10.1186/s40168-022-01424-7

    CrossRef Google Scholar

    [43] Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8):2158-2171. doi: 10.1111/j.1462-2920.2011.02463.x

    CrossRef Google Scholar

    [44] Dick G J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally[J]. Nature Reviews Microbiology, 2019, 17(5):271-283. doi: 10.1038/s41579-019-0160-2

    CrossRef Google Scholar

    [45] Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714):1428-1434. doi: 10.1126/science.1102556

    CrossRef Google Scholar

    [46] 彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学 D辑: 地球科学, 2005, 35(8):720-728

    Google Scholar

    PENG Xiaotong, ZHOU Huaiyang. The structural characteristics and growth history of the EPR9-10°N hydrothermal chimney[J]. Scientia sinica(Terrae), 2005, 35(8):720-728.]

    Google Scholar

    [47] Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31):10949-10954.

    Google Scholar

    [48] Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4):874-884. doi: 10.1111/j.1462-2920.2007.01505.x

    CrossRef Google Scholar

    [49] Wirth R. Colonization of black smokers by hyperthermophilic microorganisms[J]. Trends in Microbiology, 2017, 25(2):92-99. doi: 10.1016/j.tim.2016.11.002

    CrossRef Google Scholar

    [50] Gonnella G, Böhnke S, Indenbirken D, et al. Endemic hydrothermal vent species identified in the open ocean seed bank[J]. Nature Microbiology, 2016, 1(8):16086. doi: 10.1038/nmicrobiol.2016.86

    CrossRef Google Scholar

    [51] Mora M, Bellack A, Ugele M, et al. The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms[J]. Applied and Environmental Microbiology, 2014, 80(15):4764-4770. doi: 10.1128/AEM.00984-14

    CrossRef Google Scholar

    [52] Huber R, Stotters P, Cheminee J L, et al. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount[J]. Nature, 1990, 345(6271):179-182. doi: 10.1038/345179a0

    CrossRef Google Scholar

    [53] Gupta R S. The phylum Aquificae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Berlin, Heidelberg: Springer, 2014.

    Google Scholar

    [54] Brileya K, Reysenbach A L. The class Archaeoglobi[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 15-23.

    Google Scholar

    [55] Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents[J]. Nature, 2006, 442(7101):444-447. doi: 10.1038/nature04921

    CrossRef Google Scholar

    [56] Müller D W, Meyer C, Gürster S, et al. The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage[J]. Journal of Bacteriology, 2009, 191(20):6465-6468. doi: 10.1128/JB.00858-09

    CrossRef Google Scholar

    [57] Oren A. The family halobacteriaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 41-121.

    Google Scholar

    [58] Oren A. The family Methanococcaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 215-224.

    Google Scholar

    [59] Herzog B, Wirth R. Swimming behavior of selected species of Archaea[J]. Applied and Environmental Microbiology, 2012, 78(6):1670-1674. doi: 10.1128/AEM.06723-11

    CrossRef Google Scholar

    [60] Wirth R, Luckner M, Wanner G. Validation of a hypothesis: colonization of black smokers by hyperthermophilic microorganisms[J]. Frontiers in Microbiology, 2018, 9:524. doi: 10.3389/fmicb.2018.00524

    CrossRef Google Scholar

    [61] Nercessian O, Reysenbach A L, Prieur D, et al. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N)[J]. Environmental Microbiology, 2003, 5(6):492-502. doi: 10.1046/j.1462-2920.2003.00437.x

    CrossRef Google Scholar

    [62] Reysenbach A L, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent[J]. Applied and Environmental Microbiology, 2000, 66(9):3798-3806. doi: 10.1128/AEM.66.9.3798-3806.2000

    CrossRef Google Scholar

    [63] Reysenbach A L. Microbial diversity of marine and terrestrial thermal springs[J]. Biodiversity of Microbial Life, Foundation of Earth's Biosphere, 2002.

    Google Scholar

    [64] Kormas K A, Tivey M K, Von Damm K, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise)[J]. Environmental Microbiology, 2006, 8(5):909-920. doi: 10.1111/j.1462-2920.2005.00978.x

    CrossRef Google Scholar

    [65] Harmsen H, Prieur D, Jeanthon C. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations[J]. Applied and Environmental Microbiology, 1997, 63(7):2876-2883. doi: 10.1128/aem.63.7.2876-2883.1997

    CrossRef Google Scholar

    [66] Pjevac P, Meier D V, Markert S, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys[J]. Frontiers in Microbiology, 2018, 9:680. doi: 10.3389/fmicb.2018.00680

    CrossRef Google Scholar

    [67] Stokke R, Dahle H, Roalkvam I, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm[J]. Environmental Microbiology, 2015, 17(10):4063-4077. doi: 10.1111/1462-2920.12970

    CrossRef Google Scholar

    [68] Dahle H, Roalkvam I, Thorseth I H, et al. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney[J]. Environmental Microbiology Reports, 2013, 5(2):282-290. doi: 10.1111/1758-2229.12016

    CrossRef Google Scholar

    [69] Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6):1925-1936. doi: 10.1128/AEM.02473-10

    CrossRef Google Scholar

    [70] Kashefi K, Lovley D R. Extending the upper temperature limit for life[J]. Science, 2003, 301(5635):934. doi: 10.1126/science.1086823

    CrossRef Google Scholar

    [71] 魏曼曼, 陈新华, 周洪波. 深海热液喷口微生物群落研究进展[J]. 海洋科学, 2012, 36(6):113-121

    Google Scholar

    WEI Manman, CHEN Xinhua, ZHOU Hongbo. Research process of microbial community in deep-sea hydrothermal vents[J]. Marine Sciences, 2012, 36(6):113-121.]

    Google Scholar

    [72] 赵维殳, 肖湘. 多重极端环境中的生命: 深海热液中的超嗜热古菌Thermococclaes[J]. 中国科学: 生命科学, 2017, 47(5):470-481 doi: 10.1360/N052017-00056

    CrossRef Google Scholar

    ZHAO Weishu, XIAO Xiang. Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5):470-481.] doi: 10.1360/N052017-00056

    CrossRef Google Scholar

    [73] Huber H, Stetter K O. Desulfurococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 52-68.

    Google Scholar

    [74] Nakagawa S, Takai K. The isolation of thermophiles from deep-sea hydrothermal environments[J]. Methods in Microbiology, 2006, 35:55-91.

    Google Scholar

    [75] Jørgensen B B, Boetius A. Feast and famine - microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10):770-781. doi: 10.1038/nrmicro1745

    CrossRef Google Scholar

    [76] Pillot G, Ali O A, Davidson S, et al. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions[J]. Scientific Reports, 2021, 11(1):14782. doi: 10.1038/s41598-021-94135-2

    CrossRef Google Scholar

    [77] Pillot G, Amin Ali O, Davidson S, et al. Evolution of thermophilic microbial communities from a deep-sea hydrothermal chimney under electrolithoautotrophic conditions with nitrate[J]. Microorganisms, 2021, 9(12):2475. doi: 10.3390/microorganisms9122475

    CrossRef Google Scholar

    [78] Whitman W B, Jeanthon C. Methanococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 257-273.

    Google Scholar

    [79] Edwards K J, Rogers D R, Wirsen C O, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and, γ-Proteobacteria from the deep sea[J]. Applied and Environmental Microbiology, 2003, 69(5):2906-2913. doi: 10.1128/AEM.69.5.2906-2913.2003

    CrossRef Google Scholar

    [80] McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1):85-101. doi: 10.1016/S0967-0637(99)00048-5

    CrossRef Google Scholar

    [81] Kato S, Takano Y, Kakegawa T, et al. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the southern Mariana Trough[J]. Applied and Environmental Microbiology, 2010, 76(9):2968-2979. doi: 10.1128/AEM.00478-10

    CrossRef Google Scholar

    [82] Zhang L K, Kang M Y, Xu J J, et al. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge[J]. Scientific Reports, 2016, 6:25982. doi: 10.1038/srep25982

    CrossRef Google Scholar

    [83] Kato S, Yamagishi A. Prokaryotes in metal deposits on the deep seafloor[M]//Wilson N T. Deep Sea. Hauppauge: Nov a Science Publishers, 2014: 103-134.

    Google Scholar

    [84] 孙明雪, 宿蕾, 李江涛. 海底热液环境中嗜中性微需氧铁氧化菌的多样性、生物矿化作用及其代谢特征[J]. 微生物学报, 2022, 62(6):2119-2135

    Google Scholar

    SUN Mingxue, SU Lei, LI Jiangtao. Diversity, biomineralization, and metabolic characteristics of neutrophilic microaerophilic iron-oxidizing bacteria in seafloor hydrothermal environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2119-2135.]

    Google Scholar

    [85] Dong X Y, Zhang C W, Li W L, et al. Functional diversity of microbial communities in inactive seafloor sulfide deposits[J]. Fems Microbiology Ecology, 2021, 97(8):fiab108. doi: 10.1093/femsec/fiab108

    CrossRef Google Scholar

    [86] Kato S, Ohkuma M, Powell D H, et al. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria[J]. Frontiers in Microbiology, 2015, 6:1265.

    Google Scholar

    [87] Mcallister S M, Polson S W, Butterfield D A, et al. Validating the cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents[J]. mSystems, 2020, 5(1):e00553-19.

    Google Scholar

    [88] Fallon E K, Petersen S, Brooker R A, et al. Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining[J]. Ore Geology Reviews, 2017, 86:309-337. doi: 10.1016/j.oregeorev.2017.02.028

    CrossRef Google Scholar

    [89] Reeves E P, Yoshinaga M Y, Pjevac P, et al. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys[J]. Environmental Microbiology, 2014, 16(11):3515-3532. doi: 10.1111/1462-2920.12525

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(100) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint