Citation: | PIAN Zeyu, SU Lei, ZHANG Yan, WANG Peng, LI Jiangtao. Research progress on microbial diversity in seafloor hydrothermal chimneys[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 72-82. doi: 10.16562/j.cnki.0256-1492.2024032601 |
Seafloor hydrothermal vents serve as crucial conduits for material and energy exchange between the Earth's interior and the ocean, with their geological background playing a pivotal role in determining the chemical composition of the expelled fluid. Hydrothermal chimney stands as a quintessential structural and ecological unit within submarine hydrothermal vents, housing a diverse array of microbial groups with varying physiological functions. These microorganisms can use the chemical imbalance between high-temperature hydrothermal solution and low-temperature seawater or through weathering of various sulfide minerals to obtain the energy necessary to maintain their metabolism, and they are selectively distributed in various ecological niches in the chimney body along big environmental gradients of temperature, pH, Eh, and reducing compound concentration. Through high-throughput sequencing and omics analysis, it has been revealed that the nutrient metabolism types driving microbial life processes within the chimney encompass sulfur oxidation, sulfur reduction, methane oxidation, methane production, hydrogen nutrition, iron oxidation, nitrification and denitrification, and various other chemoautotrophic metabolic pathways, which suggests their potential significance in shaping the global element cycle. This paper provides a comprehensive and systematic overview of the microbiomes present in hydrothermal chimneys worldwide, including their distribution characteristics and variation patterns, contributing to the comprehensive and systematic understanding on hydrothermal microbial survival strategies, environmental adaptation mechanisms, and geochemical cycles involving hydrothermal microorganisms.
[1] | Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the galápagos rift[J]. Science, 1979, 203(4385):1073-1083. doi: 10.1126/science.203.4385.1073 |
[2] | Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research, 1977, 24(9):857-863. doi: 10.1016/0146-6291(77)90478-7 |
[3] | Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11):805-814. doi: 10.1038/nrmicro1991 |
[4] | Cavanaugh C M. Microbial symbiosis: patterns of diversity in the marine environment[J]. American Zoologist, 1994, 34(1):79-89. doi: 10.1093/icb/34.1.79 |
[5] | Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30:385-491. doi: 10.1146/annurev.earth.30.091201.141331 |
[6] | Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296(5570):1077-1082. doi: 10.1126/science.1072483 |
[7] | Kristall B, Kelley D S, Hannington M D, et al. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(7):Q07001. |
[8] | Tivey M K. How to build a black smoker chimney[J]. Oceanus, 1998, 41(2):22-26. |
[9] | Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000 |
[10] | Seyfried W E Jr, Pester N J, Tutolo B M, et al. The Lost City hydrothermal system: constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes[J]. Geochimica et Cosmochimica Acta, 2015, 163:59-79. doi: 10.1016/j.gca.2015.04.040 |
[11] | Aquino K A, Früh-Green G L, Rickli J, et al. Multi-stage evolution of the Lost City hydrothermal vent fluids[J]. Geochimica et Cosmochimica Acta, 2022, 332:239-262. doi: 10.1016/j.gca.2022.06.027 |
[12] | Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3625-3645. doi: 10.1016/j.gca.2006.04.016 |
[13] | Aquino K A, Frueh-Green G L, Bernasconi S M, et al. Controls on mineral formation in high pH fluids from the Lost City Hydrothermal field[J]. Geochemistry Geophysics Geosystems, 2024, 25(2):e2023GC011010. doi: 10.1029/2023GC011010 |
[14] | Olins H C, Rogers D R, Frank K L, et al. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys[J]. Geobiology, 2013, 11(3):279-293. doi: 10.1111/gbi.12034 |
[15] | Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future[J]. Oceanography, 2012, 25(1):218-233. doi: 10.5670/oceanog.2012.21 |
[16] | Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR)[J]. Chemical Geology, 2002, 191(4):345-359. doi: 10.1016/S0009-2541(02)00134-1 |
[17] | Adam N, Perner M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents[J]. Frontiers in Microbiology, 2018, 9:2873. doi: 10.3389/fmicb.2018.02873 |
[18] | Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents[J]. Marine Life Science & Technology, 2021, 3(2):204-230. |
[19] | Li J T, Cui J M, Yang Q H, et al. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney[J]. Frontiers in Microbiology, 2017, 8:1378. doi: 10.3389/fmicb.2017.01378 |
[20] | McCliment E A, Voglesonger K M, O'Day P A, et al. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage[J]. Environmental Microbiology, 2006, 8(1):114-125. doi: 10.1111/j.1462-2920.2005.00874.x |
[21] | Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology, 2003, 69(6):3580-3592. doi: 10.1128/AEM.69.6.3580-3592.2003 |
[22] | Li J T, Zhou H Y, Fang J S, et al. Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney[J]. Marine Ecology Progress Series, 2014, 508:67-85. doi: 10.3354/meps10841 |
[23] | Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. mBio, 2012, 3(1):e00279-11. |
[24] | Hou J L, Sievert S M, Wang Y Z, et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys[J]. Microbiome, 2020, 8(1):102. doi: 10.1186/s40168-020-00851-8 |
[25] | Zhou H Y, Li J T, Peng X T, et al. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge[J]. The Journal of Microbiology, 2009, 47(3):235-247. doi: 10.1007/s12275-008-0311-z |
[26] | Suzuki Y, Inagaki F, Takai K, et al. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems[J]. Microbial Ecology, 2004, 47(2):186-196. doi: 10.1007/s00248-003-1014-y |
[27] | Christakis C A, Polymenakou P N, Mandalakis M, et al. Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc[J]. Extremophiles, 2018, 22(1):13-27. doi: 10.1007/s00792-017-0971-x |
[28] | Meier D V, Pjevac P, Bach W, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses[J]. Environmental Microbiology, 2019, 21(2):682-701. doi: 10.1111/1462-2920.14514 |
[29] | Meier D V, Pjevac P, Bach W, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents[J]. The ISME Journal, 2017, 11(7):1545-1558. doi: 10.1038/ismej.2017.37 |
[30] | Wang Y, Bi H Y, Chen H G, et al. Metagenomics reveals dominant unusual sulfur oxidizers inhabiting active hydrothermal chimneys from the southwest Indian Ridge[J]. Frontiers in Microbiology, 2022, 13:861795. doi: 10.3389/fmicb.2022.861795 |
[31] | Früh-Green G L, Kelley D S, Lilley M D, et al. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges[J]. Nature Reviews Earth & Environment, 2022, 3(12):852-871. |
[32] | Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10):1933-1949. doi: 10.1016/0016-7037(95)00118-2 |
[33] | McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61(20):4375-4391. doi: 10.1016/S0016-7037(97)00241-X |
[34] | Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1):50-65. doi: 10.5670/oceanog.2007.80 |
[35] | Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology, 2008, 36(8):615-618. doi: 10.1130/G24726A.1 |
[36] | Luther III G W, Gartman A, Yücel M, et al. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: comparison of two geologically distinct ridge systems[J]. Oceanography, 2012, 25(1):234-245. doi: 10.5670/oceanog.2012.22 |
[37] | Orcutt B N, Sylvan J B, Knab N J, et al. Microbial Ecology of the Dark Ocean above, at, and below the Seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2):361-422. doi: 10.1128/MMBR.00039-10 |
[38] | Amend J P, McCollom T M, Hentscher M, et al. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types[J]. Geochimica et Cosmochimica Acta, 2011, 75(19):5736-5748. doi: 10.1016/j.gca.2011.07.041 |
[39] | McCollom T M. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems[J]. Astrobiology, 2007, 7(6):933-950. doi: 10.1089/ast.2006.0119 |
[40] | Holden J F, Breier J A, Rogers K L, et al. Biogeochemical processes at hydrothermal vents: microbes and minerals, bioenergetics, and carbon fluxes[J]. Oceanography, 2012, 25(1):196-208. doi: 10.5670/oceanog.2012.18 |
[41] | Lilley M D, Butterfield D A, Olson E J, et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system[J]. Nature, 1993, 364(6432):45-47. doi: 10.1038/364045a0 |
[42] | Zhou Z C, John E S, Anantharaman K, et al. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits[J]. Microbiome, 2022, 10(1):241. doi: 10.1186/s40168-022-01424-7 |
[43] | Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8):2158-2171. doi: 10.1111/j.1462-2920.2011.02463.x |
[44] | Dick G J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally[J]. Nature Reviews Microbiology, 2019, 17(5):271-283. doi: 10.1038/s41579-019-0160-2 |
[45] | Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714):1428-1434. doi: 10.1126/science.1102556 |
[46] | 彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学 D辑: 地球科学, 2005, 35(8):720-728 PENG Xiaotong, ZHOU Huaiyang. The structural characteristics and growth history of the EPR9-10°N hydrothermal chimney[J]. Scientia sinica(Terrae), 2005, 35(8):720-728.] |
[47] | Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31):10949-10954. |
[48] | Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4):874-884. doi: 10.1111/j.1462-2920.2007.01505.x |
[49] | Wirth R. Colonization of black smokers by hyperthermophilic microorganisms[J]. Trends in Microbiology, 2017, 25(2):92-99. doi: 10.1016/j.tim.2016.11.002 |
[50] | Gonnella G, Böhnke S, Indenbirken D, et al. Endemic hydrothermal vent species identified in the open ocean seed bank[J]. Nature Microbiology, 2016, 1(8):16086. doi: 10.1038/nmicrobiol.2016.86 |
[51] | Mora M, Bellack A, Ugele M, et al. The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms[J]. Applied and Environmental Microbiology, 2014, 80(15):4764-4770. doi: 10.1128/AEM.00984-14 |
[52] | Huber R, Stotters P, Cheminee J L, et al. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount[J]. Nature, 1990, 345(6271):179-182. doi: 10.1038/345179a0 |
[53] | Gupta R S. The phylum Aquificae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Berlin, Heidelberg: Springer, 2014. |
[54] | Brileya K, Reysenbach A L. The class Archaeoglobi[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 15-23. |
[55] | Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents[J]. Nature, 2006, 442(7101):444-447. doi: 10.1038/nature04921 |
[56] | Müller D W, Meyer C, Gürster S, et al. The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage[J]. Journal of Bacteriology, 2009, 191(20):6465-6468. doi: 10.1128/JB.00858-09 |
[57] | Oren A. The family halobacteriaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 41-121. |
[58] | Oren A. The family Methanococcaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 215-224. |
[59] | Herzog B, Wirth R. Swimming behavior of selected species of Archaea[J]. Applied and Environmental Microbiology, 2012, 78(6):1670-1674. doi: 10.1128/AEM.06723-11 |
[60] | Wirth R, Luckner M, Wanner G. Validation of a hypothesis: colonization of black smokers by hyperthermophilic microorganisms[J]. Frontiers in Microbiology, 2018, 9:524. doi: 10.3389/fmicb.2018.00524 |
[61] | Nercessian O, Reysenbach A L, Prieur D, et al. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N)[J]. Environmental Microbiology, 2003, 5(6):492-502. doi: 10.1046/j.1462-2920.2003.00437.x |
[62] | Reysenbach A L, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent[J]. Applied and Environmental Microbiology, 2000, 66(9):3798-3806. doi: 10.1128/AEM.66.9.3798-3806.2000 |
[63] | Reysenbach A L. Microbial diversity of marine and terrestrial thermal springs[J]. Biodiversity of Microbial Life, Foundation of Earth's Biosphere, 2002. |
[64] | Kormas K A, Tivey M K, Von Damm K, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise)[J]. Environmental Microbiology, 2006, 8(5):909-920. doi: 10.1111/j.1462-2920.2005.00978.x |
[65] | Harmsen H, Prieur D, Jeanthon C. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations[J]. Applied and Environmental Microbiology, 1997, 63(7):2876-2883. doi: 10.1128/aem.63.7.2876-2883.1997 |
[66] | Pjevac P, Meier D V, Markert S, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys[J]. Frontiers in Microbiology, 2018, 9:680. doi: 10.3389/fmicb.2018.00680 |
[67] | Stokke R, Dahle H, Roalkvam I, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm[J]. Environmental Microbiology, 2015, 17(10):4063-4077. doi: 10.1111/1462-2920.12970 |
[68] | Dahle H, Roalkvam I, Thorseth I H, et al. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney[J]. Environmental Microbiology Reports, 2013, 5(2):282-290. doi: 10.1111/1758-2229.12016 |
[69] | Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6):1925-1936. doi: 10.1128/AEM.02473-10 |
[70] | Kashefi K, Lovley D R. Extending the upper temperature limit for life[J]. Science, 2003, 301(5635):934. doi: 10.1126/science.1086823 |
[71] | 魏曼曼, 陈新华, 周洪波. 深海热液喷口微生物群落研究进展[J]. 海洋科学, 2012, 36(6):113-121 WEI Manman, CHEN Xinhua, ZHOU Hongbo. Research process of microbial community in deep-sea hydrothermal vents[J]. Marine Sciences, 2012, 36(6):113-121.] |
[72] | 赵维殳, 肖湘. 多重极端环境中的生命: 深海热液中的超嗜热古菌Thermococclaes[J]. 中国科学: 生命科学, 2017, 47(5):470-481 doi: 10.1360/N052017-00056 ZHAO Weishu, XIAO Xiang. Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5):470-481.] doi: 10.1360/N052017-00056 |
[73] | Huber H, Stetter K O. Desulfurococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 52-68. |
[74] | Nakagawa S, Takai K. The isolation of thermophiles from deep-sea hydrothermal environments[J]. Methods in Microbiology, 2006, 35:55-91. |
[75] | Jørgensen B B, Boetius A. Feast and famine - microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10):770-781. doi: 10.1038/nrmicro1745 |
[76] | Pillot G, Ali O A, Davidson S, et al. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions[J]. Scientific Reports, 2021, 11(1):14782. doi: 10.1038/s41598-021-94135-2 |
[77] | Pillot G, Amin Ali O, Davidson S, et al. Evolution of thermophilic microbial communities from a deep-sea hydrothermal chimney under electrolithoautotrophic conditions with nitrate[J]. Microorganisms, 2021, 9(12):2475. doi: 10.3390/microorganisms9122475 |
[78] | Whitman W B, Jeanthon C. Methanococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 257-273. |
[79] | Edwards K J, Rogers D R, Wirsen C O, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and, γ-Proteobacteria from the deep sea[J]. Applied and Environmental Microbiology, 2003, 69(5):2906-2913. doi: 10.1128/AEM.69.5.2906-2913.2003 |
[80] | McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1):85-101. doi: 10.1016/S0967-0637(99)00048-5 |
[81] | Kato S, Takano Y, Kakegawa T, et al. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the southern Mariana Trough[J]. Applied and Environmental Microbiology, 2010, 76(9):2968-2979. doi: 10.1128/AEM.00478-10 |
[82] | Zhang L K, Kang M Y, Xu J J, et al. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge[J]. Scientific Reports, 2016, 6:25982. doi: 10.1038/srep25982 |
[83] | Kato S, Yamagishi A. Prokaryotes in metal deposits on the deep seafloor[M]//Wilson N T. Deep Sea. Hauppauge: Nov a Science Publishers, 2014: 103-134. |
[84] | 孙明雪, 宿蕾, 李江涛. 海底热液环境中嗜中性微需氧铁氧化菌的多样性、生物矿化作用及其代谢特征[J]. 微生物学报, 2022, 62(6):2119-2135 SUN Mingxue, SU Lei, LI Jiangtao. Diversity, biomineralization, and metabolic characteristics of neutrophilic microaerophilic iron-oxidizing bacteria in seafloor hydrothermal environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2119-2135.] |
[85] | Dong X Y, Zhang C W, Li W L, et al. Functional diversity of microbial communities in inactive seafloor sulfide deposits[J]. Fems Microbiology Ecology, 2021, 97(8):fiab108. doi: 10.1093/femsec/fiab108 |
[86] | Kato S, Ohkuma M, Powell D H, et al. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria[J]. Frontiers in Microbiology, 2015, 6:1265. |
[87] | Mcallister S M, Polson S W, Butterfield D A, et al. Validating the cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents[J]. mSystems, 2020, 5(1):e00553-19. |
[88] | Fallon E K, Petersen S, Brooker R A, et al. Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining[J]. Ore Geology Reviews, 2017, 86:309-337. doi: 10.1016/j.oregeorev.2017.02.028 |
[89] | Reeves E P, Yoshinaga M Y, Pjevac P, et al. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys[J]. Environmental Microbiology, 2014, 16(11):3515-3532. doi: 10.1111/1462-2920.12525 |
Global distribution of seafloor hydrothermal vents[31]
Seafloor hydrothermal chimneys and their physicochemical gradients
Conceptual model of microbial succession within sulfide chimneys[24]