2025 Vol. 45, No. 2
Article Contents

WANG Qiwei, XU Jian, Ann Holbourn, Wolfgang Kuhnt. Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 121-132. doi: 10.16562/j.cnki.0256-1492.2023121901
Citation: WANG Qiwei, XU Jian, Ann Holbourn, Wolfgang Kuhnt. Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 121-132. doi: 10.16562/j.cnki.0256-1492.2023121901

Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications

More Information
  • Deep-sea carbonate burial is an important carbon sink of the Earth’s surface carbon reservoir. Its variations are closely related to that of atmospheric carbon dioxide. Paleo-environment reconstructions show that changes in atmospheric CO2 concentration do not always correlate well with past temperature changes, implying that other factors may contribute to the past global change. We examined deep-sea sediments spanning the interval of 2~1.07 Ma retrieved from IODP Site U1482 located offshore northwestern Australia in the Timor Sea. Carbonate and elemental contents were analyzed to investigate the factors that influenced carbonate burial. The early Pleistocene records at Site U1482 indicate that all of our records including carbonate content, potassium content (a proxy of regional precipitation), log(Zr/Rb) (a proxy of aeolian dust input), benthic foraminiferal δ13C, and uranium content (proxies of paleoproductivity) show long-term changes punctuated at 1.63 Ma and 1.31 Ma, possibly related to the precipitation pattern over Indonesia-Australia modulated by Walker and Hadley circulations. The continuous decrease in carbonate content and increase in potassium content after 1.31 Ma likely implicate that the intensified aridification in the northwestern Australian hinterland was caused by strengthening of the Hadley circulation. Dilution by terrestrial sediments, mainly of riverine origin, is the predominant factor modifying carbonate content on orbital timescales. Spectral analysis shows that the carbonate record was dominated by 19 ka and 29 ka cycles, likely suggesting the effect of the obliquity-paced glacial/interglacial cyclicity on the regional precipitation and terrestrial input in addition to the precessional control.

  • 加载中
  • [1] Zeebe R E, Westbroek P. A simple model for the CaCO3 saturation state of the ocean: the “Strangelove, ” the “Neritan, ” and the “Cretan” Ocean[J]. Geochemistry, 2003, 4(12): 1104.

    Google Scholar

    [2] Ridgwell A. A Mid Mesozoic Revolution in the regulation of ocean chemistry[J]. Marine Geology, 2005, 217(3-4):339-357. doi: 10.1016/j.margeo.2004.10.036

    CrossRef Google Scholar

    [3] Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2[J]. Philosophical Transactions of the Royal Society A, 2013, 371(2001):20130096. doi: 10.1098/rsta.2013.0096

    CrossRef Google Scholar

    [4] Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters, 2005, 234(3-4):299-315. doi: 10.1016/j.jpgl.2005.03.006

    CrossRef Google Scholar

    [5] Raymo M E, Ruddiman W F, Froelich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7):649-653. doi: 10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2

    CrossRef Google Scholar

    [6] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7):641-683. doi: 10.2475/ajs.283.7.641

    CrossRef Google Scholar

    [7] Pagani M, Liu Z H, LaRiviere J, et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations[J]. Nature Geoscience, 2010, 3:27-30. doi: 10.1038/ngeo724

    CrossRef Google Scholar

    [8] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western Pacific Warm Pool[M]. College Station: International Ocean Discovery Program, 2018.

    Google Scholar

    [9] Straume E O, Nummelin A, Gaina C, et al. Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17):e2115346119.

    Google Scholar

    [10] Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the middle Miocene climate optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509

    CrossRef Google Scholar

    [11] Gordon A L. Oceanography of the Indonesian seas[J]. Oceanography, 2005, 18(4):13. doi: 10.5670/oceanog.2005.18

    CrossRef Google Scholar

    [12] Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500

    CrossRef Google Scholar

    [13] He Y X, Wang H Y, Liu Z H. Development of the Leeuwin Current on the northwest shelf of Australia through the Pliocene-Pleistocene period[J]. Earth and Planetary Science Letters, 2021, 559:116767. doi: 10.1016/j.jpgl.2021.116767

    CrossRef Google Scholar

    [14] Chen Y X, Xu J, Liu J, et al. Climatic and tectonic constraints on the Plio–Pleistocene evolution of the Indonesian Throughflow intermediate water recorded by benthic δ18O from IODP site U1482[J]. Quaternary Science Reviews, 2022, 295:107666. doi: 10.1016/j.quascirev.2022.107666

    CrossRef Google Scholar

    [15] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960):824-828. doi: 10.1038/nature02038

    CrossRef Google Scholar

    [16] Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent‐Ocean Interactions Within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 299-320.

    Google Scholar

    [17] Talley L D, Sprintall J. Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the South Equatorial Current[J]. Journal of Geophysical Research:Oceans, 2005, 110(C10):C10009.

    Google Scholar

    [18] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004-2006[J]. Journal of Geophysical Research:Oceans, 2009, 114(C7):C07001.

    Google Scholar

    [19] Rosenthal Y, Linsley B K, Oppo D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342(6158):617-621. doi: 10.1126/science.1240837

    CrossRef Google Scholar

    [20] 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3):377-389 doi: 10.3969/j.issn.1671-6647.2020.03.001

    CrossRef Google Scholar

    LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the late Miocene[J]. Advances in Marine Science, 2020, 38(3):377-389.] doi: 10.3969/j.issn.1671-6647.2020.03.001

    CrossRef Google Scholar

    [21] Furnas M J, Carpenter E J. Primary production in the tropical continental shelf seas bordering northern Australia[J]. Continental Shelf Research, 2016, 129:33-48. doi: 10.1016/j.csr.2016.06.006

    CrossRef Google Scholar

    [22] Marin M, Feng M. Intra-annual variability of the North West Shelf of Australia and its impact on the Holloway Current: excitement and propagation of coastally trapped waves[J]. Continental Shelf Research, 2019, 186:88-103. doi: 10.1016/j.csr.2019.08.001

    CrossRef Google Scholar

    [23] Condie S A, Dunn J R. Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography[J]. Marine and Freshwater Research, 2006, 57(6):569-590. doi: 10.1071/MF06009

    CrossRef Google Scholar

    [24] Pei R J, Kuhnt W, Holbourn A, et al. Monitoring Australian Monsoon variability over the past four glacial cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568:110280. doi: 10.1016/j.palaeo.2021.110280

    CrossRef Google Scholar

    [25] Sarim M, Xu J, Zhang P, et al. Late quaternary clay mineral and grain-size records from northwest Australia and their implications for paleoclimate, ocean currents, and paleodrainage of the Bonaparte basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 610:111353. doi: 10.1016/j.palaeo.2022.111353

    CrossRef Google Scholar

    [26] Hesse P P, McTainsh G H. Australian dust deposits: modern processes and the Quaternary record[J]. Quaternary Science Reviews, 2003, 22(18-19):2007-2035. doi: 10.1016/S0277-3791(03)00164-1

    CrossRef Google Scholar

    [27] Kuhnt W, Holbourn A, Schönfeld J, et al. Cruise report Sonne 257, WACHEIO - Western australian climate history from eastern Indian ocean sediment archives[R]. Darwin-Fremantle: Institut für Geowissenschaften, Christian-Albrechts-Universitat Kiel, 2017.

    Google Scholar

    [28] Boyer T P, Garcia H E, Locarnini R A, et al. World Ocean Atlas 2018: sea surface temperature[DB/OL]. NOAA National Centers for Environmental Information. [2022-10-24]. https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18.

    Google Scholar

    [29] Schlitzer R. Ocean data view[CP/DK]. [2023-10-25]. https://odv.awi.de.

    Google Scholar

    [30] NASA. SeaWiFS Mission page[DB/OL]. [2023-04-07]. https://oceancolor.gsfc.nasa.gov/.

    Google Scholar

    [31] Murgese D S, de Deckker P. The Late Quaternary evolution of water masses in the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotopes analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(3-4):382-401.

    Google Scholar

    [32] de Deckker P, Barrows T T, Rogers J. Land–sea correlations in the Australian region: post-glacial onset of the monsoon in northwestern Western Australia[J]. Quaternary Science Reviews, 2014, 105:181-194. doi: 10.1016/j.quascirev.2014.09.030

    CrossRef Google Scholar

    [33] Holbourn A, Kuhnt W, Kawamura H, et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr[J]. Paleoceanography, 2005, 20(3):PA3002.

    Google Scholar

    [34] Lo Giudice Cappelli E, Holbourn A, Kuhnt W, et al. Changes in Timor Strait hydrology and thermocline structure during the past 130 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 462:112-124. doi: 10.1016/j.palaeo.2016.09.010

    CrossRef Google Scholar

    [35] Liu W, Baudin F, Moreno E, et al. Comparison of 240 ka long organic carbon and carbonate records along a depth transect in the Timor Sea: primary signals versus preservation changes[J]. Paleoceanography, 2014, 29(5):389-402. doi: 10.1002/2013PA002539

    CrossRef Google Scholar

    [36] de Vleeschouwer D, Dunlea A G, Auer G, et al. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):1053-1064. doi: 10.1002/2016GC006715

    CrossRef Google Scholar

    [37] Ólafsdóttir K B, Schulz M, Mudelsee M. REDFIT-X: cross-spectral analysis of unevenly spaced paleoclimate time series[J]. Computers & Geosciences, 2016, 91:11-18.

    Google Scholar

    [38] 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11

    Google Scholar

    WANG Pinxian. Glacial carbonate cycles in western Pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1):1-11.]

    Google Scholar

    [39] Feely R A, Sabine C L, Lee K, et al. In situ calcium carbonate dissolution in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2002, 16(4):1144.

    Google Scholar

    [40] Fischer G, Wefer G. Use of Proxies in Paleoceanography: Examples from the South Atlantic[M]. Berlin: Springer, 1999: 255-284.

    Google Scholar

    [41] Sulpis O, Jeansson E, Dinauer A, et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience, 2021, 14(6):423-428. doi: 10.1038/s41561-021-00743-y

    CrossRef Google Scholar

    [42] Kuhnt W, Holbourn A, Xu J, et al. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene[J]. Nature Communications, 2015, 6:5916. doi: 10.1038/ncomms6916

    CrossRef Google Scholar

    [43] Zhang P, Xu J, Holbourn A, et al. Obliquity induced latitudinal migration of the Intertropical Convergence Zone during the past ~410 kyr[J]. Geophysical Research Letters, 2022, 49(21):e2022GL100039. doi: 10.1029/2022GL100039

    CrossRef Google Scholar

    [44] Liu L W, Chen J, Chen Y, et al. Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon[J]. Chinese Science Bulletin, 2002, 47(15):1298-1302. doi: 10.1360/02tb9288

    CrossRef Google Scholar

    [45] Schofield A. Uranium Content of Igneous Rocks of Australia 1:5000000 Maps—Explanatory Notes and Discussion[M]. Camberra: Geoscience Australia, 2009: 20.

    Google Scholar

    [46] McManus J, Berelson W M, Klinkhammer G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):95-108. doi: 10.1016/j.gca.2004.06.023

    CrossRef Google Scholar

    [47] Auer G, Hauzenberger C A, Reuter M, et al. Orbitally paced phosphogenesis in Mediterranean shallow marine carbonates during the middle Miocene Monterey event[J]. Geochemistry Geophysics Geosystems, 2016, 17(4):1492-1510. doi: 10.1002/2016GC006299

    CrossRef Google Scholar

    [48] Zhang Y, Andrade T, Ravelo A C, et al. Aridification of northwest Australia and nutrient decline in the Timor sea during the 40 Kyr world[J]. Paleoceanography and Paleoclimatology, 2023, 38(10):e2023PA004683. doi: 10.1029/2023PA004683

    CrossRef Google Scholar

    [49] Auer G, Petrick B, Yoshimura T, et al. Intensified organic carbon burial on the Australian shelf after the Middle Pleistocene transition[J]. Quaternary Science Reviews, 2021, 262:106965. doi: 10.1016/j.quascirev.2021.106965

    CrossRef Google Scholar

    [50] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724. doi: 10.1126/science.289.5485.1719

    CrossRef Google Scholar

    [51] Etourneau J, Schneider R, Blanz T, et al. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition[J]. Earth and Planetary Science Letters, 2010, 297(1-2):103-110. doi: 10.1016/j.jpgl.2010.06.010

    CrossRef Google Scholar

    [52] Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328(5985):1530-1534. doi: 10.1126/science.1185435

    CrossRef Google Scholar

    [53] Petrick B, Martínez-García A, Auer G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9(1):16995. doi: 10.1038/s41598-019-53382-0

    CrossRef Google Scholar

    [54] Smith R A, Castañeda I S, Groeneveld J, et al. Retracted: Plio-Pleistocene Indonesian throughflow variability drove eastern Indian ocean sea surface temperatures[J]. Paleoceanography and Paleoclimatology, 2020, 35(10):e2020PA003872. doi: 10.1029/2020PA003872

    CrossRef Google Scholar

    [55] Wara M W, Ravelo A C, Delaney M L. Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309(5735):758-761. doi: 10.1126/science.1112596

    CrossRef Google Scholar

    [56] Li L, Li Q Y, Tian J, et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change[J]. Earth and Planetary Science Letters, 2011, 309(1-2):10-20. doi: 10.1016/j.jpgl.2011.04.016

    CrossRef Google Scholar

    [57] Stuut J B W, De Deckker P, Saavedra-Pellitero M, et al. A 5.3-million-year history of monsoonal precipitation in northwestern Australia[J]. Geophysical Research Letters, 2019, 46(12):6946-6954. doi: 10.1029/2019GL083035

    CrossRef Google Scholar

    [58] Christensen B A, Renema W, Henderiks J, et al. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13):6914-6925. doi: 10.1002/2017GL072977

    CrossRef Google Scholar

    [59] Fedorov A V, Brierley C M, Lawrence K T, et al. Patterns and mechanisms of early Pliocene warmth[J]. Nature, 2013, 496(7443):43-49. doi: 10.1038/nature12003

    CrossRef Google Scholar

    [60] Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance and silicate weathering/erosion from the eastern Arabian sea and their responses to the Indian summer monsoon since the mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4):e2019PA003732. doi: 10.1029/2019PA003732

    CrossRef Google Scholar

    [61] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539):2440-2444. doi: 10.1126/science.293.5539.2440

    CrossRef Google Scholar

    [62] Di Nezio P N, Timmermann A, Tierney J E, et al. The climate response of the Indo-Pacific warm pool to glacial sea level[J]. Paleoceanography, 2016, 31(6):866-894. doi: 10.1002/2015PA002890

    CrossRef Google Scholar

    [63] Windler G, Tierney J E, DiNezio P N, et al. Shelf exposure influence on Indo-Pacific Warm Pool climate for the last 450, 000 years[J]. Earth and Planetary Science Letters, 2019, 516:66-76. doi: 10.1016/j.jpgl.2019.03.038

    CrossRef Google Scholar

    [64] Liautaud P, Huybers P. Uniformitarian prediction of early-Pleistocene atmospheric CO2[J]. Geophysical Research Letters, 2022, 49(20):e2022GL100304. doi: 10.1029/2022GL100304

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(16) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint