2025 Vol. 45, No. 2
Article Contents

YANG Rui, QIN Jungan, WANG Ren, ZHANG Wei, YAN Zhuoyu, CUI Shuheng, HUANG Zhijin, RUAN Zhimei. Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 110-120. doi: 10.16562/j.cnki.0256-1492.2023120502
Citation: YANG Rui, QIN Jungan, WANG Ren, ZHANG Wei, YAN Zhuoyu, CUI Shuheng, HUANG Zhijin, RUAN Zhimei. Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 110-120. doi: 10.16562/j.cnki.0256-1492.2023120502

Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin

  • The Miocene Meishan Formation in the Qiongdongnan Basin in the northern continental shelf of the South China Sea lacks direct fossil evidence for understanding the ancient vegetation and climate conditions in the basin due to the scarcity of spores and pollen fossils. The Miocene biostratigraphy, vegetation, and climate changes were documented from 114 fossiliferous samples from Well ST-A. Results show that the calcareous nannofossil boundaries of the Sanya Formation (Early Miocene) / Meishan Formation (Middle Miocene) / Huangliu Formation (Late Miocene) are at 2780 m and 2300 m in depth, respectively. Miocene vegetation in the study area was tropical and subtropical evergreen broad-leaved forest, and mixed forest of evergreen broad-leaved and deciduous broad-leaved. The presence of coniferous forest restricted to the uplands shown in the Sanya Formation reflects warmer and wetter climate in Early Miocene than that of the late Oligocene in the Lingshui Formation. The expansion of the evergreen broad-leaved forest and deciduous broad-leaved forest, accompanied by the contraction of the coniferous forest during early and middle stage of the middle Miocene (the bottom and middle section of Meishan Formation), suggested increases in temperature and humidity, which is indicative of the Middle Miocene Climate Optimum (MMCO). The climate conditions in late Miocene (the top of Meishan Formation and Huangliu Formation) turned to be cold, characterizing of the flourish of coniferous forest again. Meishan Formation witnessed the climate variability of warm and cold during the middle Miocene.

  • 加载中
  • [1] 潘松圻, 邹才能, 李勇, 等. 重大生物事件与石化能源形成演化: 兼论地球系统框架下能源学发展[J]. 石油勘探与开发, 2021, 48(3):498-509

    Google Scholar

    PAN Songqi, ZOU Caineng, LI Yong, et al. Major biological events and fossil energy formation: On the development of energy science under the earth system framework[J]. Petroleum Exploration and Development, 2021, 48(3):498-509.]

    Google Scholar

    [2] 朱伟林, 吴国瑄, 黎明碧. 南海北部陆架北部湾盆地古湖泊与烃源条件[J]. 海洋与湖沼, 2004, 35(1):8-14

    Google Scholar

    ZHU Weilin, WU Guoxuan, LI Mingbi. Palaeolimology and hydrocarbon potential in Beibu Gulf Basin of South China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(1):8-14.]

    Google Scholar

    [3] 雷作淇. 珠江口盆地第三纪孢粉组合及其意义[J]. 植物学报, 1985, 27(1):94-105

    Google Scholar

    LEI Zuoqi. Tertiary sporo-sollen assemblage of Zhujiangkou (Pearl River North) Basin and its stratigraphical significance[J]. Acta Botanica Sinica, 1985, 27(1):94-105.]

    Google Scholar

    [4] 李君, 王任, 覃军干, 等. 北部湾盆地涠西南凹陷古、新近系古生物记录及古环境意义[J]. 海洋地质与第四纪地质, 2020, 40(2):29-36

    Google Scholar

    LI Jun, WANG Ren, QIN Jungan, et al. Paleogene-Neogene micropaleontological records of the of Weixinan Depression, Beibuwan Basin and their paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2020, 40(2):29-36.]

    Google Scholar

    [5] 黄家保, 黄合庭, 吴国瑄, 等. 北部湾盆地始新统湖相富有机质页岩特征及成因机制[J]. 石油学报, 2012, 33(1):25-31

    Google Scholar

    HUANG Jiabao, HUANG Heting, WU Guoxuan, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine organic-rich shales in Beibuwan Basin[J]. Acta Petrolei Sinica, 2012, 33(1):25-31.]

    Google Scholar

    [6] 张丽丽, 舒梁锋, 冯轩, 等. 再论珠江口盆地恩平组时代归属[J]. 中国海上油气, 2020, 32(5):9-18

    Google Scholar

    ZHANG Lili, SHU Liangfeng, FENG Xuan, et al. Further discussion on the age assignment of Enping Formation in the Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2020, 32(5):9-18.]

    Google Scholar

    [7] 李金帅, 李贤庆, 王元, 等. 琼东南盆地深水区烃源岩地球化学特征和生烃潜力评价[J]. 矿业科学学报, 2021, 6(2):166-175

    Google Scholar

    LI Jinshuai, LI Xianqing, WANG Yuan, et al. Geochemical characteristics and hydrocarbon generation potential evaluation of source rocks in deepwater area of Qiongdongnan Basin[J]. Journal of Mining Science and Technology, 2021, 6(2):166-175.]

    Google Scholar

    [8] 谢玉洪, 李绪深, 范彩伟, 等. 琼东南盆地上中新统黄流组轴向水道源汇体系与天然气成藏特征[J]. 石油勘探与开发, 2016, 43(4):521-528

    Google Scholar

    XIE Yuhong, LI Xushen, FAN Caiwei, et al. The axial channel provenance system and natural gas accumulation of the Upper Miocene Huangliu Formation in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2016, 43(4):521-528.]

    Google Scholar

    [9] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [10] Westerhold T, Bickert T, Rőhl U. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217:205-222. doi: 10.1016/j.palaeo.2004.12.001

    CrossRef Google Scholar

    [11] 谢金有, 覃军干, 李君, 等. 南海莺歌海盆地渐新世—上新世孢粉组合序列及其古环境意义[J]. 微体古生物学报, 2014, 31(1):85-87

    Google Scholar

    XIE Jinyou, QIN Jungan, LI Jun, et al. Palynological assemblages of the Oligocene and Pliocene in the Yinggehai-Qiongdongnan Basin of the Northern South China Sea and their paleoenvironmental implications[J]. Acta Micropalaeontologica Sinica, 2014, 31(1):85-87.]

    Google Scholar

    [12] 覃军干, 吴国瑄, 李君, 等. 琼东南盆地渐新统—上新统孢粉、藻类记录[J]. 微体古生物学报, 2016, 33(4):335-349

    Google Scholar

    QIN Jungan, WU Guoxuan, LI Jun, et al. Spores, pollen, freshwater alage and dinoflagellate cysts recorded in the Oligocene—Pliocene from Southeast Hainan Basin, South China Sea[J]. Acta Micropalaeontologica Sinica, 2016, 33(4):335-349.]

    Google Scholar

    [13] 陈平, 王任, 覃军干, 等. 琼东南盆地深水区WN-A井渐新世—中新世孢粉地层学及古气候[J]. 吉林大学学报:地球科学版, 2022, 52(2):390-402

    Google Scholar

    CHEN Ping, WANG Ren, QIN Jungan, et al. Oligocene-Miocene palynostratigraphy and paleoclimate of Well WN-A from deep water area, Southeast Hainan Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2):390-402.]

    Google Scholar

    [14] 王萍莉, 溥发鼎. 壳斗科植物花粉形态及生物地理[M]. 广州: 广东科技出社, 2004

    Google Scholar

    WANG Pingli, PU Fading. Pollen Morphology and Biogeography of Fagaceae[M]. Guangzhou: Guangdong Science and Technology Press, 2004.]

    Google Scholar

    [15] Liu Y S, Zetter R, Ferguson D K, et al. Discriminating fossil evergreen and deciduous quercus pollen: A case Study from the Miocene of Eastern China[J]. Review of Palaeobotany and Palynology, 2007, 145:289-303. doi: 10.1016/j.revpalbo.2006.12.001

    CrossRef Google Scholar

    [16] Grimm E C. TGview Version 2.0. 2. Illinois State Museum Research Collection Center[R]. Springfield, 2004.

    Google Scholar

    [17] Grimm E C. CONISS: A fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares[J]. Comput Geosci, 1987, 13(1):13-35. doi: 10.1016/0098-3004(87)90022-7

    CrossRef Google Scholar

    [18] Martini E. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation[C]// Farinacci A. Proceedings Ⅱ Planktonic Conference. Roma: Edizioni Tecnoscienza, 1971, 2: 739-785.

    Google Scholar

    [19] 谢金有, 祝幼华, 麦文, 等. 南海北部莺歌海盆地钙质超微化石年代地层研究[J]. 微体古生物学报, 2010, 27(4):289-298

    Google Scholar

    XIE Jinyou, ZHU Youhua, MAI Wei, et al. Chronostratigraphy of calcareous nannofossils in the Yinggehai-Qiongdongnan Basin, Northern South China Sea[J]. Acta Micropalaeontologica Sinica, 2010, 27(4):289-298.]

    Google Scholar

    [20] Bown P R. Calcareous Nannofossils Biostratigraphy[M]. Chapman & Hall, 1998: 1-314.

    Google Scholar

    [21] Howard A, Martin B. Microfossils[M]. Blackwell, 2005.

    Google Scholar

    [22] Saraswati P K, Srinivasan M S. Micropaleontology Principles and Applications[M]. Springer, 2016.

    Google Scholar

    [23] Gradstein F M, Ogg J G, Smith M D, et al. The Geologic Time Scale 2012[M]. Cambridge: Cambridge University Press, 2012.

    Google Scholar

    [24] 姜仕军. 珠江口盆地PY27-2-1井高分辨率钙质超微生物地层和层序地层学研究[J]. 中国海上油气(地质), 1999, 13(3):189-195

    Google Scholar

    JIANG Shijun. High resolution calcareous nannofossil biostratigraphy and sequence stratigraphy of Well PY27-2-1 Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1999, 13(3):189-195.]

    Google Scholar

    [25] 黄虑生. 珠江口盆地第三系生物地层框架[J]. 中国海上油气(地质), 1999, 13(6):406-414

    Google Scholar

    HUANG Lusheng. Tertiary biostratigraphic framework of Pearl River Mouth Basin[J]. China Offshore Oil and Gas(Geology), 1999, 13(6):406-414.]

    Google Scholar

    [26] Bergen J, Kaenel E D, Blair S, et al. Oligocene-Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154[J]. Journal of Nannoplankton Research, 2017, 37(2-3):77-112. doi: 10.58998/jnr2016

    CrossRef Google Scholar

    [27] Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4):6829-6848. doi: 10.1029/90JB02015

    CrossRef Google Scholar

    [28] Akgün F, Kayseri M S, Akkiraz M S. Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1-2):56-90. doi: 10.1016/j.palaeo.2007.03.034

    CrossRef Google Scholar

    [29] Ivanov D, Utescher T, Mosbrugger V, et al. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3-4):262-275. doi: 10.1016/j.palaeo.2010.07.006

    CrossRef Google Scholar

    [30] Kovar-Eder J, Jechorek H, Kvaçek Z, et al. The integrated plant record: An essential tool for reconstructing neogene zonal vegetation in Europe[J]. Palaios, 2008, 23(2):97-111. doi: 10.2110/palo.2006.p06-039r

    CrossRef Google Scholar

    [31] Utescher T, Bruch A A, Micheels A, et al. Cenozoic climate gradients in Eurasia—a palaeo-perspective on future climate change?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304:351-358. doi: 10.1016/j.palaeo.2010.09.031

    CrossRef Google Scholar

    [32] Yao Y F, Bruch A A, Mosbrugger V, et al. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3-4):291-307. doi: 10.1016/j.palaeo.2010.04.012

    CrossRef Google Scholar

    [33] Sun X J, Wang P X, How old is the Asian monsoon system? -palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222: 181-222.

    Google Scholar

    [34] Jin D M, Yuan Q, Dai X L, et al. Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks[J]. Journal of Systematics and Evolution, 2023, doi. org/10.1111/jse. 13022.

    Google Scholar

    [35] 阮培华, 万晓樵, 徐钰林, 等. 莺-琼盆地第三纪微体古生物群及地层划分[J]. 中国海上油气(地质), 1994, 8(6):377-386

    Google Scholar

    RUAN Peihua, WAN Xiaoqiao, XU Yulin, et al. Tertiary micropaleontology and stratigraphic division of Yinggehai-Qiongdongnan Basin[J]. China Offshore Oil and Gas (Geology), 1994, 8(6):377-386.]

    Google Scholar

    [36] 张一凡, 刘东生, 张训华. 琼东南盆地新生代孢粉组合及其古气候意义[J]. 海洋地质与第四纪地质, 2017, 37(1):93-101

    Google Scholar

    ZHANG Yifan, LIU Dongsheng, ZHANG Xunhua. Neogene palynological assemblages from Qiongdongnan Basin and their paleoclimatic implications[J]. Marine Geology& Quaternary Geology, 2017, 37(1):93-101.]

    Google Scholar

    [37] 赵飞, 祝幼华, 季兴开, 等. 南海北部珠江口盆地深水区LW5井晚渐新世—早中新世孢粉组合[J]. 微体古生物学报, 2017, 34(2):201-210

    Google Scholar

    ZHAO Fei, ZHU Youhua, JI Xingkai, et al. Late Oligocene to Early Miocene palynological assemblages of Well LW5 in the deep water area, Pearl River Mouth Basin, Northern South China Sea[J]. Acta Micropalaeontologica Sinica, 2017, 34(2):201-210.]

    Google Scholar

    [38] 张宗言, 刘祥, 李响, 等. 广东雷州半岛河头镇ZKA01钻孔剖面晚渐新世-早更新世孢粉组合及古植被演替[J]. 地质通报, 2020, 39(6):880-892

    Google Scholar

    ZHANG Zongyan, LIU Xiang, LI Xiang, et al. The Late Oligocene-Early Pleistocene sporopollen assemblages and paleovegetation succession of core ZKA01 in Hetou Town, Leizhou Peninsula of Guangdong Province[J]. Geological Bulletin of China, 2020, 39(6):880-892.]

    Google Scholar

    [39] You Y, Huber M, Müller R D, et al. Simulation of the Middle Miocene Climate Optimum[J]. Geophysical Research Letters, 2009, 36:L04702.

    Google Scholar

    [40] Hui Z, Zhang J, Ma Z, et al. Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:106-117. doi: 10.1016/j.palaeo.2018.10.025

    CrossRef Google Scholar

    [41] Hui Z, Zhou X, Chevalier M, et al. Miocene East Asia summer monsoon precipitation variability and its possible driving forces[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581: Art. Nr. 110609.

    Google Scholar

    [42] 张宗言, 刘祥, 李响, 等. 广东雷州半岛晚渐新世—早更新世孢粉共存因子分析及古气候变化重建[J]. 地学前缘, 2022, 29(2):303-316

    Google Scholar

    ZHANG Zongyan, LIU Xiang, LI Xiang, et al. Insights into the late Oligocene-early Pleistocene vegetation secession and climate change in the Leizhou Peninsula Guangdong, China[J]. Earth Science Frontiers, 2022, 29(2):303-316.]

    Google Scholar

    [43] Pound M J, Haywood A M, Salzmann U, et al. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma)[J]. Earth-Science Reviews, 2012, 112(1-2):1-22. doi: 10.1016/j.earscirev.2012.02.005

    CrossRef Google Scholar

    [44] 中国科学院中国植物志编辑委员会. 中国植物志( 第13卷第1册)[M]. 科学出版社, 1979: 68-108

    Google Scholar

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 13, Volume 1)[M]. Science Press, 1979: 68-108.]

    Google Scholar

    [45] 中国科学院中国植物志编辑委员会. 中国植物志(52卷第2册)[M]. 科学出版社, 1979: 148-157

    Google Scholar

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 52, Volume 2) [M]. Science Press, 1979: 148-157.]

    Google Scholar

    [46] 中国科学院中国植物志编辑委员会. 中国植物志(第6卷第3册)[M]. 科学出版社, 1979: 256-274

    Google Scholar

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 6, Volume 3) [M]. Science Press, 1979: 256-274.]

    Google Scholar

    [47] Ding W, Hou D, Gan J, et al. Sedimentary geochemical records of late Miocene-early Pliocene palaeovegetation and palaeoclimate evolution in the Ying-Qiong Basin, South China Sea[J]. Marine Geology, 2022, 445:106750. doi: 10.1016/j.margeo.2022.106750

    CrossRef Google Scholar

    [48] Wen Y, Zhang L, Holbourn A E, et al. CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia[J]. Proceedings of the National Academy of Sciences, 2023, 120(5):e2214655120. doi: 10.1073/pnas.2214655120

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(13) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint