2023 Vol. 43, No. 5
Article Contents

WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. doi: 10.16562/j.cnki.0256-1492.2023082502
Citation: WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. doi: 10.16562/j.cnki.0256-1492.2023082502

Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific

More Information
  • The majority of the world's greatest earthquakes are generated in subduction zones. Normal faults in subducting plates provide pathways for seawater intrusion, which facilitates mantle serpentinization and consequently triggers seismic activities or large tsunamis. The formation mechanisms of these normal faults need to be better understood to advance the understanding of subduction zone dynamics and ensuring human life safety. This paper reviews the characteristics of normal faults and deformation of subducting plates in the Tonga Trench, Mariana Trench, Izu-Bonin Trench, and Japan Trench in the western Pacific Ocean, describe in quantitative detail the formation of bending-related normal faults through geodynamic modeling. The study finds that the Tonga Trench and Mariana Trench exhibit the largest average fault throws among these subduction systems. The variations in effective elastic thickness of the subducting plate directly influence the distribution of normal faulting region. There is a significant correlation between plate effective elastic thickness and plate age. This paper provides a systematic review of research on the dynamics of the Western Pacific subduction zone and offers insights for future studies in this field.

  • 加载中
  • [1] de Bremaecker J C. Is the oceanic lithosphere elastic or viscous?[J]. Journal of Geophysical Research, 1977, 82(14):2001-2004. doi: 10.1029/JB082i014p02001

    CrossRef Google Scholar

    [2] Hilde T W C. Sediment subduction versus accretion around the pacific[J]. Tectonophysics, 1983, 99(2-4):381-397. doi: 10.1016/0040-1951(83)90114-2

    CrossRef Google Scholar

    [3] Melosh H J. Dynamic support of the outer rise[J]. Geophysical Research Letters, 1978, 5(5):321-324. doi: 10.1029/GL005i005p00321

    CrossRef Google Scholar

    [4] Parsons B, Molnar P. The origin of outer topographic rises associated with trenches[J]. Geophysical Journal International, 1976, 45(3):707-712. doi: 10.1111/j.1365-246X.1976.tb06919.x

    CrossRef Google Scholar

    [5] Watts A B, Taiwani M. Gravity anomalies seaward of deep‐sea trenches and their tectonic implications[J]. Geophysical Journal International, 1974, 36(1):57-90. doi: 10.1111/j.1365-246X.1974.tb03626.x

    CrossRef Google Scholar

    [6] Beavan J, Wang X, Holden C, et al. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009[J]. Nature, 2010, 466(7309):959-963. doi: 10.1038/nature09292

    CrossRef Google Scholar

    [7] Christensen D H, Ruff L J. Outer-rise earthquakes and seismic coupling[J]. Geophysical Research Letters, 1983, 10(8):697-700. doi: 10.1029/GL010i008p00697

    CrossRef Google Scholar

    [8] Kanamori H. Seismological evidence for a lithospheric normal faulting—the Sanriku earthquake of 1933[J]. Physics of the Earth and Planetary Interiors, 1971, 4(4):289-300. doi: 10.1016/0031-9201(71)90013-6

    CrossRef Google Scholar

    [9] Lay T, Ammon C J, Kanamori H, et al. The 2009 Samoa-Tonga great earthquake triggered doublet[J]. Nature, 2010, 466(7309):964-968. doi: 10.1038/nature09214

    CrossRef Google Scholar

    [10] Kao H, Chen W P. Seismicity in the outer rise-forearc region and configuration of the subducting lithosphere with special reference to the Japan Trench[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12):27811-27831. doi: 10.1029/96JB01760

    CrossRef Google Scholar

    [11] Lefeldt M, Ranero C R, Grevemeyer I. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5):Q05013.

    Google Scholar

    [12] Kobayashi K, Nakanishi M, Tamaki K, et al. Outer slope faulting associated with the western Kuril and Japan trenches[J]. Geophysical Journal International, 1998, 134(2):356-372. doi: 10.1046/j.1365-246x.1998.00569.x

    CrossRef Google Scholar

    [13] Turcotte D L, McAdoo D C, Caldwell J G. An elastic-perfectly plastic analysis of the bending of the lithosphere at a trench[J]. Tectonophysics, 1978, 47(3-4):193-205. doi: 10.1016/0040-1951(78)90030-6

    CrossRef Google Scholar

    [14] Ivandic M, Grevemeyer I, Berhorst A, et al. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B5):B05410.

    Google Scholar

    [15] Zhou Z Y, Lin J, Zhang F. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening[J]. Acta Oceanologica Sinica, 2018, 37(11):53-60. doi: 10.1007/s13131-018-1146-z

    CrossRef Google Scholar

    [16] Zhou Z Y, Lin J, Behn M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench[J]. Geophysical Research Letters, 2015, 42(11):4309-4317. doi: 10.1002/2015GL063917

    CrossRef Google Scholar

    [17] Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956):367-373. doi: 10.1038/nature01961

    CrossRef Google Scholar

    [18] Ranero C R, Sallarès V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the North Chile Trench[J]. Geology, 2004, 32(7):549-552. doi: 10.1130/G20379.1

    CrossRef Google Scholar

    [19] Zhang F, Lin J, Zhou Z Y, et al. Intra- and intertrench variations in flexural bending of the Manila, Mariana and global trenches: implications on plate weakening in controlling trench dynamics[J]. Geophysical Journal International, 2018, 212(2):1429-1449. doi: 10.1093/gji/ggx488

    CrossRef Google Scholar

    [20] Tilmann F J, Grevemeyer I, Flueh E R, et al. Seismicity in the outer rise offshore southern Chile: indication of fluid effects in crust and mantle[J]. Earth and Planetary Science Letters, 2008, 269(1-2):41-55. doi: 10.1016/j.jpgl.2008.01.044

    CrossRef Google Scholar

    [21] Wessel P, Smith W H F. New, improved version of generic mapping tools released[J]. Eos, Transactions American Geophysical Union, 1998, 79(47):579-579. doi: 10.1029/98EO00426

    CrossRef Google Scholar

    [22] Zhang F, Lin J, Zhan W H. Variations in oceanic plate bending along the Mariana Trench[J]. Earth and Planetary Science Letters, 2014, 401:206-214. doi: 10.1016/j.jpgl.2014.05.032

    CrossRef Google Scholar

    [23] Masson D G. Fault patterns at outer trench walls[J]. Marine Geophysical Researches, 1991, 13(3):209-225. doi: 10.1007/BF00369150

    CrossRef Google Scholar

    [24] Ranero C R, Villaseñor A, Morgan J P, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12):Q12002.

    Google Scholar

    [25] Zhou Z Y, Lin J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench[J]. Tectonophysics, 2018, 734-735:59-68. doi: 10.1016/j.tecto.2018.04.008

    CrossRef Google Scholar

    [26] 林间, 孙珍, 李家彪, 等. 南海成因: 岩石圈破裂与俯冲带相互作用新认识[J]. 科技导报, 2020, 38(18):35-39

    Google Scholar

    LIN Jian, SUN Zhen, LI Jiabiao, et al. South China Seabasin opening: Lithospheric rifting and interactionwith surroundingsubduction zones[J]. Science & Technology Review, 2020, 38(18):35-39.

    Google Scholar

    [27] 林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10):125-140

    Google Scholar

    LIN Jian, LI Jiabiao, XU Yigang, et al. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea[J]. Haiyang Xuebao, 2019, 41(10):125-140.

    Google Scholar

    [28] Lin J, Xu Y G, Sun Z, et al. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems[J]. National Science Review, 2019, 6(5):877-881. doi: 10.1093/nsr/nwz123

    CrossRef Google Scholar

    [29] Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin: special topic: the South China Sea Ocean Drilling[J]. National Science Review, 2019, 6(5):871-876. doi: 10.1093/nsr/nwz116

    CrossRef Google Scholar

    [30] 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1590-1606

    Google Scholar

    WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects[J]. Science China Earth Sciences, 2019, 62(10): 1473-1488.

    Google Scholar

    [31] 徐敏, 狄会哲, 周志远, 等. 俯冲带水圈-岩石圈相互作用研究进展与启示[J]. 海洋地质与第四纪地质, 2019, 39(5):58-70

    Google Scholar

    XU Min, DI Huizhe, ZHOU Zhiyuan, et al. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5):58-70.

    Google Scholar

    [32] Han S S, Carbotte S M, Canales J P, et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):1849-1872. doi: 10.1002/2015JB012416

    CrossRef Google Scholar

    [33] Zhu G H, Wiens D A, Yang H F, et al. Upper mantle hydration indicated by decreased shear velocity near the southern Mariana Trench from Rayleigh wave tomography[J]. Geophysical Research Letters, 2021, 48(15):e2021GL093309. doi: 10.1029/2021GL093309

    CrossRef Google Scholar

    [34] Zhang J Y, Zhang F, Lin J, et al. Yield failure of the subducting plate at the Mariana Trench[J]. Tectonophysics, 2021, 814:228944. doi: 10.1016/j.tecto.2021.228944

    CrossRef Google Scholar

    [35] 张江阳, 林间, 张帆, 等. 西太平洋俯冲带岩石圈变形研究[J]. 科技导报, 2023, 41(2):29-34

    Google Scholar

    ZHANG Jiangyang, LIN Jian, ZHANG Fan, et al. Lithospheric deformation in western Pacific subduction zones[J]. Science & Technology Review, 2023, 41(2):29-34.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1063) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint