2023 Vol. 43, No. 5
Article Contents

YE Fanfan, ZENG Zhigang. States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2023022701
Citation: YE Fanfan, ZENG Zhigang. States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2023022701

States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity

More Information
  • To understand the element occurrence states of sediments in the southern Okinawa Trough and the influence of hydrothermal activity on the elemental composition of the sediments, the whole-sample and sequential extraction of core HOBAB4-S2 from the southern Okinawa Trough were analyzed and the occurrence state of Al, Ti, K, Fe, Mn, Cu, Zn, Pb, Co, Ni, and rare earth elements in the sediment core. The results show that the residual phase and carbonate phase are the important forms of elements in the sediments, and the typical clastic components Al, K, and Ti have a high proportion in the residual phase. The contents of elements in Fe-Mn oxide and organic bound phases are relatively low, but in the Fe-Mn oxide phase, the extraction rates and contents of metallic elements associated with hydrothermal activity in the cores are consistent with depth, and anomalously high values appear in four layers, indicating that the significant influence of hydrothermal activity on elemental compositions occurred in the corresponding period of the layer. The same trend can be seen in the total amount of rare earth elements. The chondrite-normalized rare earth element distribution patterns of the sediments show evidence of light rare earth element enrichment relative to heavy rare earth elements, with very small positive Ce anomalies and obvious negative Eu anomalies. The case is similar to the distribution pattern of the Fe-Mn oxide phase of the sediments in the South Atlantic Ocean, showing that it was less affected by hydrothermal activity, but affected by hydrothermal fluids, which is the result of rare earth elements absorption by Fe-Mn particles in seawater and hydrothermal fluids.

  • 加载中
  • [1] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa trough [J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041

    CrossRef Google Scholar

    [2] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    CrossRef Google Scholar

    [3] Lee C S, Shor Jr G G, Bibee L D, et al. Okinawa Trough: origin of a back-arc basin [J]. Marine Geology, 1980, 35(1-3): 219-241. doi: 10.1016/0025-3227(80)90032-8

    CrossRef Google Scholar

    [4] Kimura M. Back-arc rifting in the Okinawa Trough [J]. Marine and Petroleum Geology, 1985, 2(3): 222-240. doi: 10.1016/0264-8172(85)90012-1

    CrossRef Google Scholar

    [5] Letouzey J, Kimura M. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin [J]. Tectonophysics, 1986, 125(1-3): 209-230. doi: 10.1016/0040-1951(86)90015-6

    CrossRef Google Scholar

    [6] 翟世奎, 陈丽蓉, 王镇, 等. 冲绳海槽浮岩岩浆活动模式浅析[J]. 海洋地质与第四纪地质, 1997, 17(1):59-66 doi: 10.16562/j.cnki.0256-1492.1997.01.010

    CrossRef Google Scholar

    ZHAI Shikui, CHEN Lirong, WANG Zhen, et al. Primary analysis on pumice magmatism model of the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 1997, 17(1): 59-66. doi: 10.16562/j.cnki.0256-1492.1997.01.010

    CrossRef Google Scholar

    [7] 黄朋, 李安春, 蒋恒毅. 冲绳海槽北、中段火山岩地球化学特征及其地质意义[J]. 岩石学报, 2006, 22(6):1703-1712 doi: 10.3321/j.issn:1000-0569.2006.06.027

    CrossRef Google Scholar

    HUANG Peng, LI Anchun, JIANG Hengyi. Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough [J]. Acta Petrologica Sinica, 2006, 22(6): 1703-1712. doi: 10.3321/j.issn:1000-0569.2006.06.027

    CrossRef Google Scholar

    [8] Zhang Y J, Zhai S K. Magma evolution processes in the southern Okinawa trough: insights from melt inclusions [J]. Journal of Ocean University of China, 2021, 20(6): 1383-1397. doi: 10.1007/s11802-021-4567-9

    CrossRef Google Scholar

    [9] Chung Y, Chang W C. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough [J]. Continental Shelf Research, 1995, 15(2-3): 149-164. doi: 10.1016/0278-4343(94)E0023-F

    CrossRef Google Scholar

    [10] Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary [J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001

    CrossRef Google Scholar

    [11] Kimura M, Furukawa M, Izawa E, et al. Report on DELP 1988 Cruises in the Okinawa Trough. Part 7. Geologic investigation of the central rift in the middle to southern Okinawa Trough [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1991, 66(1): 179-209.

    Google Scholar

    [12] Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan [J]. Economic Geology, 1993, 88(8): 2210-2225. doi: 10.2113/gsecongeo.88.8.2210

    CrossRef Google Scholar

    [13] Rusakov V Y. Possible reasons for correlations between the concentrations of major and trace metals in metalliferous sediments [J]. Geochemistry International, 2010, 48(3): 305-314. doi: 10.1134/S0016702910030080

    CrossRef Google Scholar

    [14] Mills R A. Hydrothermal deposits and metalliferous sediments from TAG, 26°N Mid-Atlantic Ridge[M]//Parson L M, Walker C L, Dixon D R. Hydrothermal Vents and Processes. London: Geological Society, 1995: 121-132.

    Google Scholar

    [15] Dekov V M, Cuadros J, Kamenov G D, et al. Metalliferous sediments from the H. M. S. Challenger voyage (1872-1876) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5019-5038. doi: 10.1016/j.gca.2010.06.001

    CrossRef Google Scholar

    [16] Dymond J, Corliss J B, Heath G R, et al. Origin of metalliferous sediments from the Pacific Ocean [J]. GSA Bulletin, 1973, 84(10): 3355-3372. doi: 10.1130/0016-7606(1973)84<3355:OOMSFT>2.0.CO;2

    CrossRef Google Scholar

    [17] Mills R, Elderfield H, Thomson J. A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid‐Atlantic Ridge [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6): 9671-9681. doi: 10.1029/92JB01414

    CrossRef Google Scholar

    [18] Gurvich E G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation[M]. Berlin: Springer, 2006.

    Google Scholar

    [19] Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough [J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    CrossRef Google Scholar

    [20] Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid‐Okinawa Trough Backarc Basin [J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133

    CrossRef Google Scholar

    [21] Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview [J]. Ore Geology Reviews, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001

    CrossRef Google Scholar

    [22] Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin [J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1

    CrossRef Google Scholar

    [23] Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 337-359.

    Google Scholar

    [24] Gena K, Chiba H, Kase K, et al. The tiger sulfide chimney, Yonaguni knoll IV hydrothermal field, southern Okinawa trough, Japan: the first reported occurrence of Pt–Cu–Fe‐bearing bismuthinite and Sn‐bearing chalcopyrite in an active seafloor hydrothermal system [J]. Resource Geology, 2013, 63(4): 360-370. doi: 10.1111/rge.12015

    CrossRef Google Scholar

    [25] Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough Back‐Arc Basin [J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x

    CrossRef Google Scholar

    [26] Yeats C J, Hollis S P, Halfpenny A, et al. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan [J]. Ore Geology Reviews, 2017, 84: 20-41. doi: 10.1016/j.oregeorev.2016.12.014

    CrossRef Google Scholar

    [27] Xu Z K, Li T G, Chang F M, et al. Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyr BP and its paleoenvironmental implication [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 236-245. doi: 10.1016/j.palaeo.2014.01.016

    CrossRef Google Scholar

    [28] Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2

    CrossRef Google Scholar

    [29] Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough [J]. Ore Geology Reviews, 2020, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464

    CrossRef Google Scholar

    [30] Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation [J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    CrossRef Google Scholar

    [31] Zeng Z G, Ma Y, Wang X Y, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough [J]. Journal of Marine Systems, 2018, 180: 90-101. doi: 10.1016/j.jmarsys.2016.08.012

    CrossRef Google Scholar

    [32] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough [J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015

    CrossRef Google Scholar

    [33] Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough [J]. Journal of Marine Systems, 2018, 180: 124-131. doi: 10.1016/j.jmarsys.2016.11.007

    CrossRef Google Scholar

    [34] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis [J]. Chemical Geology, 2002, 187(3-4): 179-199. doi: 10.1016/S0009-2541(01)00416-8

    CrossRef Google Scholar

    [35] Bayon G, German C R, Burton K W, et al. Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033

    CrossRef Google Scholar

    [36] Chester R, Hughes M J. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments [J]. Chemical Geology, 1967, 2: 249-262. doi: 10.1016/0009-2541(67)90025-3

    CrossRef Google Scholar

    [37] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments [J]. Chemical Geology, 2007, 242(3-4): 351-370. doi: 10.1016/j.chemgeo.2007.03.021

    CrossRef Google Scholar

    [38] Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5): 10591-10608. doi: 10.1029/1999JB900040

    CrossRef Google Scholar

    [39] Li N S. On tectonic problems of the Okinawa Trough [J]. Chinese Journal of Oceanology and Limnology, 2001, 19(3): 255-264. doi: 10.1007/BF02850663

    CrossRef Google Scholar

    [40] Zeng Z G, Yu S X, Wang X Y, et al. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough [J]. Acta Oceanologica Sinica, 2010, 29(4): 48-61. doi: 10.1007/s13131-010-0050-y

    CrossRef Google Scholar

    [41] Lai Z Q, Zhao G T, Han Z Z, et al. Back‐arc magma processes in the Okinawa Trough: new insights from textural and compositional variations of plagioclase in basalts [J]. Geological Journal, 2016, 51(S1): 346-356.

    Google Scholar

    [42] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa trough Backarc basin: Early tectonic and magmatic evolution [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12): 30245-30267. doi: 10.1029/98JB01823

    CrossRef Google Scholar

    [43] Arai R, Kodaira S, Yuka K, et al. Crustal structure of the southern Okinawa Trough: symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back‐arc basin [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 622-641. doi: 10.1002/2016JB013448

    CrossRef Google Scholar

    [44] Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific [J]. Geological Journal, 2016, 51(S1): 416-428.

    Google Scholar

    [45] Takai K, Mottl M J, Nielsen S H, et al. Proceedings of the integrated ocean drilling program[C]. Washington, DC: Integrated Ocean Drilling Program Management International, Inc, 2011.

    Google Scholar

    [46] 胡思谊. 冲绳海槽南部S3岩心沉积物的矿物学和地球化学研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2020

    Google Scholar

    HU Siyi. Mineralogical and geochemical study of sediment core S3 from the southern Okinawa Trough[D]. Doctor Dissertation of University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2020.

    Google Scholar

    [47] 于增慧, 高玉花, 翟世奎, 等. 冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J]. 中国科学:地球科学, 2012, 55(3):665-674

    Google Scholar

    YU Zenghui, GAO Yuhua, ZHAI Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough [J]. Science China Earth Sciences, 2012, 55(3): 665-674.

    Google Scholar

    [48] 李康, 曾志刚, 殷学博, 等. 东太平洋海隆13°N和赤道附近表层沉积物中的元素赋存状态[J]. 海洋地质与第四纪地质, 2009, 29(3):53-60

    Google Scholar

    LI Kang, ZENG Zhigang, YIN Xuebo, et al. Mode of element occurrence in surface sediments from East Pacific Rise near 13°N and the equator [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 53-60.

    Google Scholar

    [49] 蒋富清, 李安春. 冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J]. 沉积学报, 2002, 20(4):680-686 doi: 10.3969/j.issn.1000-0550.2002.04.024

    CrossRef Google Scholar

    JIANG Fuqing, LI Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the South Okinawa trough [J]. Acta Sedimentologica Sinica, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024

    CrossRef Google Scholar

    [50] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    CrossRef Google Scholar

    [51] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.

    Google Scholar

    [52] 张颖, 杨宝菊, 李传顺, 等. 南大西洋热液沉积物的不同相态提取方法与元素赋存状态[J]. 海洋学报, 2021, 43(3):90-104

    Google Scholar

    ZHANG Ying, YANG Baoju, LI Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge [J]. Haiyang Xuebao, 2021, 43(3): 90-104.

    Google Scholar

    [53] Chung Y C, Hung G W. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa trough [J]. Continental Shelf Research, 2000, 20(4-5): 571-597. doi: 10.1016/S0278-4343(99)00086-2

    CrossRef Google Scholar

    [54] German C R, Higgs N C, Thomson J, et al. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08′N, Mid‐Atlantic Ridge [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6): 9683-9692. doi: 10.1029/92JB01705

    CrossRef Google Scholar

    [55] Dias Á S, Mills R A, Taylor R N, et al. Geochemistry of a sediment push-core from the Lucky Strike hydrothermal field, Mid-Atlantic Ridge [J]. Chemical Geology, 2008, 247(3-4): 339-351. doi: 10.1016/j.chemgeo.2007.10.015

    CrossRef Google Scholar

    [56] Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: the East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2241-2253. doi: 10.1016/0016-7037(87)90278-X

    CrossRef Google Scholar

    [57] Yang Y M, Zeng Z G, Yin X B, et al. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough [J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9

    CrossRef Google Scholar

    [58] 杨娅敏. 冲绳海槽南部浊流沉积层中的硫化物特征研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2021

    Google Scholar

    YANG Yamin. Study on the characteristics of turbidite sediments hosted sulfides deposit from the southern Okinawa Trough[D]. Doctor Dissertation of University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2021.

    Google Scholar

    [59] Fujiwara T, Toyoda S, Uchida A, et al. ESR dating of barite in sea-floor hydrothermal sulfide deposits in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 369-386.

    Google Scholar

    [60] Hsu S C, Lin F J, Jeng W L, et al. Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(7): 979-997. doi: 10.1016/j.dsr.2004.01.009

    CrossRef Google Scholar

    [61] Ishibashi J I, Okino K, Sunamura M, et al. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept[M]. Tokyo: Springer, 2015.

    Google Scholar

    [62] Ruhlin D E, Owen R M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism [J]. Geochimica et Cosmochimica Acta, 1986, 50(3): 393-400. doi: 10.1016/0016-7037(86)90192-4

    CrossRef Google Scholar

    [63] Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: implications for the REE content of seawater [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 757-762. doi: 10.1016/0016-7037(89)90019-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(695) PDF downloads(36) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint