2023 Vol. 43, No. 5
Article Contents

HUANG Xin, LI Longwei, WANG Wenzhuo, WANG Yuhao, CHEN Shuai, KANG Yurou. The composition and source of hydrocarbons in the hydrothermal products of Tangyin and Yonaguni Knoll IV hydrothermal fields from the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 181-189. doi: 10.16562/j.cnki.0256-1492.2023091401
Citation: HUANG Xin, LI Longwei, WANG Wenzhuo, WANG Yuhao, CHEN Shuai, KANG Yurou. The composition and source of hydrocarbons in the hydrothermal products of Tangyin and Yonaguni Knoll IV hydrothermal fields from the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 181-189. doi: 10.16562/j.cnki.0256-1492.2023091401

The composition and source of hydrocarbons in the hydrothermal products of Tangyin and Yonaguni Knoll IV hydrothermal fields from the Okinawa Trough

More Information
  • The hydrothermal sulfide and sediment of the Tangyin and Yonaguni Knoll Ⅳ hydrothermal fields in the southern Okinawa Trough were analyzed in gas chromatography-mass spectrometry (GC-MS) and gas chromatography-isotope ratio mass spectrometry (GC-IRMS), by which the abundances of hydrocarbons and the individual C isotope compositions of n-alkane were determined. The n-alkanes in the hydrothermal products conformed to a bimodal distribution, and exhibited an odd-to-even predominance of high molecular weight n-alkanes with maxima at C31 and an even-to-odd predominance of low molecular weight n-alkanes with maxima at C18. The distribution and individual carbon isotopic compositions of n-alkanes suggest that the low molecular weight n-alkanes in hydrothermal products may be mainly the result of the metabolic activity of submarine hydrothermal microorganisms, and the high-molecular weight n-alkanes in hydrothermal products may be derived from mainly the terrigenous inputs. The content and proportion of low-molecular n-alkanes in hydrothermal sulfides are higher than those of hydrothermal sediment, indicating that hydrothermal microbial activity might be more flourishing in hydrothermal sulfide. The δ13C values of the n-alkanes in the hydrothermal sulfide samples tend to decrease as the number of carbon atoms increased, which suggest that the abiogenic contribution to the source of hydrocarbons in hydrothermal sulfides shall not be ignored.

  • 加载中
  • [1] Lein A Y, Peresypkin V I, Simoneit B R T. Origin of hydrocarbons in hydrothermal sulfide ores in the mid-Atlantic ridge[J]. Lithology and Mineral Resources, 2003, 38(5):383-393. doi: 10.1023/A:1025525818526

    CrossRef Google Scholar

    [2] Simoneit B R T, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2275-2294. doi: 10.1016/j.gca.2003.11.025

    CrossRef Google Scholar

    [3] Peng X T, Li J W, Zhou H Y, et al. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges[J]. Journal of Asian Earth Sciences, 2011, 41(3):355-368. doi: 10.1016/j.jseaes.2011.03.005

    CrossRef Google Scholar

    [4] Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin, 2017, 115(1-2):507-514. doi: 10.1016/j.marpolbul.2016.12.034

    CrossRef Google Scholar

    [5] Huang X, Chen S, Wang X Y, et al. The distribution and composition of hydrocarbons in sediments of the South Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2018, 37(1):89-96. doi: 10.1007/s13131-018-1160-1

    CrossRef Google Scholar

    [6] Huang X, Huang C, Qi Y L, et al. Characteristics of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa trough[J]. Marine Pollution Bulletin, 2021, 167:112277. doi: 10.1016/j.marpolbul.2021.112277

    CrossRef Google Scholar

    [7] 周怀阳, 李江涛, 彭晓彤. 海底热液活动与生命起源[J]. 自然杂志, 2009, 31(4):207-212

    Google Scholar

    ZHOU Huaiyang, LI Jiangtao, PENG Xiaotong. Seafloor hydrothermal system and the origin of life[J]. Chinese Journal of Nature, 2009, 31(4):207-212.

    Google Scholar

    [8] Konn C, Charlou J L, Donval J P, et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents[J]. Chemical Geology, 2009, 258(3-4):299-314. doi: 10.1016/j.chemgeo.2008.10.034

    CrossRef Google Scholar

    [9] Chernova T G, Rao P S, Pikovskii Y I, et al. The composition and the source of hydrocarbons in sediments taken from the tectonically active Andaman Backarc Basin, Indian Ocean[J]. Marine Chemistry, 2001, 75(1-2):1-15. doi: 10.1016/S0304-4203(01)00021-4

    CrossRef Google Scholar

    [10] Venkatesan M I, Ruth E, Rao P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6):845-861. doi: 10.1016/S0883-2927(02)00180-4

    CrossRef Google Scholar

    [11] Simoneit B R T. Lipid/bitumen maturation by hydrothermal activity in sediments of middle valley, Leg 139[M]//Mottl M J, Davis E E, Fisher A T, et al. Proceedings of the Ocean Drilling Program, Scientific Results. Texas: College Station, 1994: 447-465.

    Google Scholar

    [12] Simoneit B R T, Grimalt J O, Hayes J M, et al. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea[J]. Geochimica et Cosmochimica Acta, 1987, 51(4):879-894. doi: 10.1016/0016-7037(87)90101-3

    CrossRef Google Scholar

    [13] Michaelis W, Jenisch A, Richnow H H. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban deeps[J]. Applied Geochemistry, 1990, 5(1-2):103-114. doi: 10.1016/0883-2927(90)90041-3

    CrossRef Google Scholar

    [14] Kvenvolden K A, Rapp J B, Hostettler F D, et al. Petroleum associated with polymetallic sulfide in sediment from gorda ridge[J]. Science, 1986, 234(4781):1231-1234. doi: 10.1126/science.234.4781.1231

    CrossRef Google Scholar

    [15] Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney[J]. Journal of Sea Research, 2011, 65(3):333-339. doi: 10.1016/j.seares.2011.01.005

    CrossRef Google Scholar

    [16] Li J W, Peng X T, Zhou H Y, et al. Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges[J]. Geochemical Journal, 2012, 46(1):31-43. doi: 10.2343/geochemj.1.0150

    CrossRef Google Scholar

    [17] Shulga N A, Peresypkin V I, Revelskii I A. Composition research of n-alkanes in the samples of hydrothermal deposits of the Mid-Atlantic Ridge by means of gas chromatography-mass spectrometry[J]. Oceanology, 2010, 50(4):479-487. doi: 10.1134/S0001437010040041

    CrossRef Google Scholar

    [18] Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field[J]. Science, 2008, 319(5863):604-607. doi: 10.1126/science.1151194

    CrossRef Google Scholar

    [19] Bradley A S, Summons R E. Multiple origins of methane at the Lost City Hydrothermal Field[J]. Earth and Planetary Science Letters, 2010, 297(1-2):34-41. doi: 10.1016/j.jpgl.2010.05.034

    CrossRef Google Scholar

    [20] Morgunova I P, Ivanov V N, Litvinenko I V, et al. Geochemistry of organic matter in bottom sediments of the Ashadze hydrothermal field[J]. Oceanology, 2012, 52(3):345-353. doi: 10.1134/S0001437012030083

    CrossRef Google Scholar

    [21] Petrova V I, Batova G I, Kursheva A V, et al. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean[J]. Russian Geology and Geophysics, 2010, 51(1):88-97. doi: 10.1016/j.rgg.2009.12.008

    CrossRef Google Scholar

    [22] Zhang Q L, Hou Z Q, Tang S H. Organic composition of sulphide ores in the okinawa trough and its implications[J]. Acya Geologica Sinica, 2001, 75(2):196-203.

    Google Scholar

    [23] 黄鑫, 陈法锦, 祁雅莉, 等. 冲绳海槽北部柱状沉积物中有机质地球化学特征—对热液活动的指示[J]. 海洋科学, 2018, 42(6):1-11

    Google Scholar

    HUANG Xin, CHEN Fajin, QI Yali, et al. The geochemical characteristics of organic matter in sediment core of the northern of the Okinawa Trough: implication for hydrothermal activity[J]. Marine Sciences, 2018, 42(6):1-11.

    Google Scholar

    [24] Zhang X, Zhai S K, Yu Z H, et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J]. Ore Geology Reviews, 2019, 111:102944. doi: 10.1016/j.oregeorev.2019.102944

    CrossRef Google Scholar

    [25] Letouzey J, Kimura M. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin[J]. Tectonophysics, 1986, 125(1-3):209-230. doi: 10.1016/0040-1951(86)90015-6

    CrossRef Google Scholar

    [26] Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8):2210-2225. doi: 10.2113/gsecongeo.88.8.2210

    CrossRef Google Scholar

    [27] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa trough backarc basin: Early tectonic and magmatic evolution[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30245-30267. doi: 10.1029/98JB01823

    CrossRef Google Scholar

    [28] 李怀明, 翟世奎. 冲绳海槽岩浆活动研究进展及思考[J]. 地质论评, 2008, 54(1):120-124 doi: 10.3321/j.issn:0371-5736.2008.01.013

    CrossRef Google Scholar

    LI Huaiming, ZHAI Shikui. Advances and developments in study of the magmatism in the Okinawa Trough[J]. Geological Review, 2008, 54(1):120-124. doi: 10.3321/j.issn:0371-5736.2008.01.013

    CrossRef Google Scholar

    [29] Wang L, Yu M, Liu Y, et al. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough[J]. Journal of Marine Systems, 2018, 180:162-172. doi: 10.1016/j.jmarsys.2016.11.012

    CrossRef Google Scholar

    [30] Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review[J]. Acta Oceanologica Sinica, 2014, 33(4):1-12. doi: 10.1007/s13131-014-0400-2

    CrossRef Google Scholar

    [31] Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5):10591-10608. doi: 10.1029/1999JB900040

    CrossRef Google Scholar

    [32] Wang S Je, Sun W D, Huang J, et al. S, Pb, and Fe isotope compositions of sulfides in middle and southern Okinawa Trough: implying the complicated hydrothermal systems in back-arc spreading centers[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2023, 195:104006. doi: 10.1016/j.dsr.2023.104006

    CrossRef Google Scholar

    [33] Klingelhoefer F, Lee C S, Lin J Y, et al. Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data[J]. Tectonophysics, 2009, 466(3-4):281-288. doi: 10.1016/j.tecto.2007.11.031

    CrossRef Google Scholar

    [34] Fujikura K, Fujiwara Y, Ishibashi J I, et al. Report on investigation of hydrothermal vent ecosystems by the crewed submersible ‘Shinkai 2000’ on the Dai-yon (no. 4) Yonaguni Knoll and the Hatoma Knoll, the Okinawa Trough[J]. JAMSTEC Journal of Deep Sea Research, 2001, 1(9):141-154.

    Google Scholar

    [35] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011

    Google Scholar

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    Google Scholar

    [36] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87:172-191. doi: 10.1016/j.oregeorev.2016.09.015

    CrossRef Google Scholar

    [37] 尚鲁宁, 陈磊, 张训华, 等. 冲绳海槽南部海底热液活动区地形地貌特征及成因分析[J]. 海洋地质与第四纪地质, 2019, 39(4):12-22 doi: 10.16562/j.cnki.0256-1492.2017112301

    CrossRef Google Scholar

    SHANG Luning, CHEN Lei, ZHANG Xunhua, et al. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4):12-22. doi: 10.16562/j.cnki.0256-1492.2017112301

    CrossRef Google Scholar

    [38] Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497:146-161. doi: 10.1016/j.chemgeo.2018.09.002

    CrossRef Google Scholar

    [39] Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough[J]. Journal of Marine Systems, 2018, 180:124-131. doi: 10.1016/j.jmarsys.2016.11.007

    CrossRef Google Scholar

    [40] Zhang X, Zhai S K, Sun Z L, et al. Rare earth elements and Sr, S isotope compositions of hydrothermal deposits from the Okinawa Trough: insight into mineralization condition and metal sources[J]. Marine Geology, 2022, 443:106683. doi: 10.1016/j.margeo.2021.106683

    CrossRef Google Scholar

    [41] Wang S, Cao X C, Liu L J, et al. Stakelama marina sp. nov. , isolated from seawater of the Tangyin hydrothermal field in the Okinawa Trough[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(5): 005902.

    Google Scholar

    [42] Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120:103464. doi: 10.1016/j.oregeorev.2020.103464

    CrossRef Google Scholar

    [43] Yang Z F, Xiao X, Zhang Y. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge[J]. Marine Life Science & Technology, 2020, 2(1):73-86.

    Google Scholar

    [44] McCollom T M, Seewald J S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments[J]. Chemical Reviews, 2007, 107(2):382-401. doi: 10.1021/cr0503660

    CrossRef Google Scholar

    [45] Konn C, Testemale D, Querellou J, et al. New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids[J]. Geobiology, 2011, 9(1):79-93. doi: 10.1111/j.1472-4669.2010.00260.x

    CrossRef Google Scholar

    [46] Elias V O, Simoneit B R T, Cardoso J N. Even N-alkane predominances on the amazon shelf and a northeast pacific hydrothermal system[J]. Naturwissenschaften, 1997, 84(9):415-420. doi: 10.1007/s001140050421

    CrossRef Google Scholar

    [47] Xu Z K, Li T G, Chang F M, et al. Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyrBP and its paleoenvironmental implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399:236-245. doi: 10.1016/j.palaeo.2014.01.016

    CrossRef Google Scholar

    [48] Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430:74-84. doi: 10.1016/j.palaeo.2015.04.017

    CrossRef Google Scholar

    [49] 陈祖兴. 冲绳海槽南部火山岩的成因及其对弧后盆地壳幔相互作用的指示意义[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2019

    Google Scholar

    CHEN Zuxing. Petrogenesis of volcanic rocks from the southern Okinawa Trough and its implications for crust-mantle interaction in the back-arc basin[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2019.

    Google Scholar

    [50] Fichken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8):745-749. doi: 10.1016/S0146-6380(00)00081-4

    CrossRef Google Scholar

    [51] Mead R, Xu Y P, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005, 36(3):363-370. doi: 10.1016/j.orggeochem.2004.10.003

    CrossRef Google Scholar

    [52] Simoneit B R T. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Middle Valley, Northeastern Pacific Ocean[J]. Applied Geochemistry, 2002, 17(11):1429-1433. doi: 10.1016/S0883-2927(02)00110-5

    CrossRef Google Scholar

    [53] Brazelton W J, Schrenk M O, Kelley D S, et al. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J]. Applied and Environmental Microbiology, 2006, 72(9):6257-6270. doi: 10.1128/AEM.00574-06

    CrossRef Google Scholar

    [54] Corre E, Reysenbach A L, Prieur D. ϵ-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge[J]. FEMS Microbiology Letters, 2001, 205(2):329-335.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1261) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint