2023 Vol. 43, No. 5
Article Contents

WU Xiaodan, CHANG Fengming, WU Bin, SUN Hanjie, ZHONG Weijie. Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101
Citation: WU Xiaodan, CHANG Fengming, WU Bin, SUN Hanjie, ZHONG Weijie. Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101

Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend

More Information
  • Eutrophication has been increasingly occurred in the South Yellow Sea (SYS), the main region of outbreak of green tide. However, the mechanism and evolution of eutrophication in this area remains not fully resolved. Concentrations and forms of the surface sediment phosphorus (P) in the SYS were determined by the modified sequential extraction method (SEDEX) to examine the bioavailability and potential contribution to the eutrophication. Results show that the mean value of total phosphorus (TP) in surface sediments was 514 mg/kg, being generally in a mildly contaminated condition. Inorganic phosphorus (IP) was the main form (76.39%), of which 30.17% was Ca-P. The average contribution of each P form was in the order of OP (organic P) > Ca-P (Ca bound P) > De-P (detritus P) > Fe-P (Fe bound P > Ex-P (exchangeable P). Ca-P and De-P are not bioavailable species, which are less easily released under normal hydrodynamic disturbance in sediments, and are generally enriched in coarse-grained sediments. Ex-P and Fe-P are easily adsorbed into fine-grained sediments, for which pH, temperature, hydrodynamics, and redox conditions are important environmental factors. Acidification of seawater in the SYS will elevate the release of Ex-P and Fe-P into seawater and worsen the degree of eutrophication. Distribution of OP indicated the contribution of biological processes in the open sea in addition to the terrestrial input in the nearshore. The mean value of bioavailable phosphorus including Ex-P, Fe-P and OP was 240.1 mg/kg, which accounted for 46.4% of TP, suggesting that sedimentary P in SYS is more bioavailable, showing a higher risk of P release into the water column, and an important long-term potential contributor to local eutrophication.

  • 加载中
  • [1] Wang B D, Xin M, Wei Q S, et al. A historical overview of coastal eutrophication in the China Seas[J]. Marine Pollution Bulletin, 2018, 136:394-400. doi: 10.1016/j.marpolbul.2018.09.044

    CrossRef Google Scholar

    [2] 黎慧, 万夕和, 王李宝, 等. 南黄海辐射沙脊群海域氮磷的季节变化及潜在性富营养化分析[J]. 生态科学, 2016, 35(2):75-80

    Google Scholar

    LI Hui, WAN Xihe, WANG Libao, et al. Seasonal change of nitrogen and phosphorus and analysis of potential eutrophication in radial sand ridge group region of the South Yellow Sea[J]. Ecological Science, 2016, 35(2):75-80.

    Google Scholar

    [3] 杨庶, 杨茜, 曲克明, 等. 南黄海近海富营养化长期演变的沉积记录[J]. 海洋与湖沼, 2017, 48(1):22-28

    Google Scholar

    YANG Shu, YANG Qian, QU Keming, et al. Sedimental records of eutrophication in coastal waters of the southern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(1):22-28.

    Google Scholar

    [4] 颜天, 于仁成, 周名江, 等. 黄海海域大规模绿潮成因与应对策略: “鳌山计划”研究进展[J]. 海洋与湖沼, 2018, 49(5):950-958

    Google Scholar

    YAN Tian, YU Rencheng, ZHOU Mingjiang, et al. Mechanism of massive formation and prevention strategy against large-scale green tides in the south yellow sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5):950-958.

    Google Scholar

    [5] 韦钦胜, 王保栋, 姚庆祯, 等. 海水增温和富营养化驱动下的黄海水体脱氧和酸化[C]//中国海洋学会2017年学术年会论文集. 青岛: 中国海洋学会, 2017: 83-97

    Google Scholar

    WEI Qinsheng, WANG Baodong, YAO Qingzhen, et al. Deoxygenation and acidification of Yellow Sea waters driven by seawater warming and eutrophication[C]//Proceedings of the 2017 Annual Academic Conference of the Oceanic Society of China. Qingdao, 2017: 83-97.

    Google Scholar

    [6] Wei Q S, Yao Q Z, Wang B D, et al. Long-term variation of nutrients in the southern Yellow Sea[J]. Continental Shelf Research, 2015, 111:184-196. doi: 10.1016/j.csr.2015.08.003

    CrossRef Google Scholar

    [7] 宋金明, 李学刚, 邵君波, 等. 南黄海沉积物中氮、磷的生物地球化学行为[J]. 海洋与湖沼, 2006, 37(4):370-376

    Google Scholar

    SONG Jinming, LI Xuegang, SHAO Junbo, et al. Biogeochemical characteristics of nitrogen and phosphorus in the south Yellow Sea sediments[J]. Oceanologia et Limnologia Sinica, 2006, 37(4):370-376.

    Google Scholar

    [8] Meng J, Yu Z G, Yao Q Z, et al. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary[J]. Marine Chemistry, 2015, 168:124-134. doi: 10.1016/j.marchem.2014.09.016

    CrossRef Google Scholar

    [9] Barik S K, Bramha S, Bastia T K, et al. Characteristics of geochemical fractions of phosphorus and its bioavailability in sediments of a largest brackish water lake, South Asia[J]. Ecohydrology & Hydrobiology, 2019, 19(3):370-382.

    Google Scholar

    [10] Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):991-1007. doi: 10.1016/0016-7037(93)90035-U

    CrossRef Google Scholar

    [11] Li C L, Yang D Z, Zhai W D. Effects of warming, eutrophication and climate variability on acidification of the seasonally stratified North Yellow Sea over the past 40 years[J]. Science of the Total Environment, 2022, 815:152935. doi: 10.1016/j.scitotenv.2022.152935

    CrossRef Google Scholar

    [12] Sun Y Q, Yao L L, Liu J L, et al. Prevention strategies for green tides at source in the Southern Yellow Sea[J]. Marine Pollution Bulletin, 2022, 178:113646. doi: 10.1016/j.marpolbul.2022.113646

    CrossRef Google Scholar

    [13] Li D X, Gao Z Q, Wang Z C. Analysis of the reasons for the outbreak of Yellow Sea green tide in 2021 based on long-term multi-source data[J]. Marine Environmental Research, 2022, 178:105649. doi: 10.1016/j.marenvres.2022.105649

    CrossRef Google Scholar

    [14] Wang J J, Beusen A H W, Liu X C, et al. Spatially explicit inventory of sources of nitrogen inputs to the Yellow Sea, East China Sea, and South China Sea for the period 1970-2010[J]. Earth’s Future, 2020, 8(10):e2020EF001516. doi: 10.1029/2020EF001516

    CrossRef Google Scholar

    [15] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Yellow Sea Geology[M]. Beijing: Ocean Press, 1989.

    Google Scholar

    [16] 苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005

    Google Scholar

    SU Jilan, YUAN Yeli. Modern Hydrology in China[M]. Beijing: Ocean Press, 2005.

    Google Scholar

    [17] 石学法, 刘焱光, 乔淑卿, 等. 渤海、黄海和东海沉积物类型图[M]. 北京: 科学出版社, 2021

    Google Scholar

    SHI Xuefa, LIU Yanguang, QIAO Shuqing, et al. Sediment Type Map of the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing: Science Press, 2021.

    Google Scholar

    [18] Aydin I, Aydin F, Saydut A, et al. A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment[J]. Journal of Hazardous Materials, 2009, 168(2-3):664-669. doi: 10.1016/j.jhazmat.2009.02.095

    CrossRef Google Scholar

    [19] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3):151-158.

    Google Scholar

    [20] Fu Z H, Hong Z J, Wei J L, et al. Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance[J]. Journal of Soils and Sediments, 2022, 22(9):2530-2547. doi: 10.1007/s11368-022-03257-1

    CrossRef Google Scholar

    [21] 黎睿, 王圣瑞, 肖尚斌, 等. 长江中下游与云南高原湖泊沉积物磷形态及内源磷负荷[J]. 中国环境科学, 2015, 35(6):1831-1839

    Google Scholar

    LI Rui, WANG Shengrui, XIAO Shangbin, et al. Sediments phosphorus forms and loading in the lakes of the mid-lower reaches of the Yangtze River and Yunnan Plateau, China[J]. China Environmental Science, 2015, 35(6):1831-1839.

    Google Scholar

    [22] Luo C Y, Wen S L, Lu Y H, et al. Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments[J]. Chemical Geology, 2022, 588:120645. doi: 10.1016/j.chemgeo.2021.120645

    CrossRef Google Scholar

    [23] Ding S, Liu Y, Dan S F, et al. Historical changes of sedimentary P-binding forms and their ecological driving mechanism in a typical "grass-algae" eutrophic lake[J]. Water Research, 2021, 204:117604. doi: 10.1016/j.watres.2021.117604

    CrossRef Google Scholar

    [24] Cheng X L, Huang Y N, Li R, et al. Impacts of water temperature on phosphorus release of sediments under flowing overlying water[J]. Journal of Contaminant Hydrology, 2020, 235:103717. doi: 10.1016/j.jconhyd.2020.103717

    CrossRef Google Scholar

    [25] Ding S M, Sun Q, Chen X, et al. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®): New insight into sediment phosphorus immobilization[J]. Water Research, 2018, 134:32-43. doi: 10.1016/j.watres.2018.01.055

    CrossRef Google Scholar

    [26] Chen X M, Zhang W, Yin Y P, et al. Seasonal variation characteristics and release potential of phosphorus in sediments: a case study of the Qiuxi River, a typical diffuse source pollution river in southwestern China[J]. Journal of Soils and Sediments, 2021, 21(1):575-591. doi: 10.1007/s11368-020-02805-x

    CrossRef Google Scholar

    [27] Liu Y Q, Cao X Y, Li H, et al. Distribution of phosphorus-solubilizing bacteria in relation to fractionation and sorption behaviors of phosphorus in sediment of the Three Gorges Reservoir[J]. Environmental Science and Pollution Research, 2017, 24(21):17679-17687. doi: 10.1007/s11356-017-9339-0

    CrossRef Google Scholar

    [28] Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments - lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8):1147-1155. doi: 10.1016/S0045-6535(01)00242-9

    CrossRef Google Scholar

    [29] Chen H J. Surface-flow constructed treatment wetlands for pollutant removal: applications and perspectives[J]. Wetlands, 2011, 31(4):805-814. doi: 10.1007/s13157-011-0186-3

    CrossRef Google Scholar

    [30] 周帆琦, 沙茜, 张维昊, 等. 武汉东湖和南湖沉积物中磷形态分布特征与相关分析[J]. 湖泊科学, 2014, 26(3):401-409 doi: 10.18307/2014.0310

    CrossRef Google Scholar

    ZHOU Fanqi, SHA Qian, ZHANG Weihao, et al. Distribution and correlation analysis of phosphorus fractions in the sediments from the Lake Nanhu and Lake Donghu in Wuhan[J]. Journal of Lake Sciences, 2014, 26(3):401-409. doi: 10.18307/2014.0310

    CrossRef Google Scholar

    [31] Andrieux-Loyer F, Aminot A. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas[J]. Estuarine, Coastal and Shelf Science, 2001, 52(5):617-629. doi: 10.1006/ecss.2001.0766

    CrossRef Google Scholar

    [32] 魏俊峰, 陈洪涛, 刘月良, 等. 2008年调水调沙期间黄河下游悬浮颗粒物中磷的赋存形态[J]. 环境科学, 2011, 32(2):368-374

    Google Scholar

    WEI Junfeng, CHEN Hongtao, LIU Yueliang, et al. Phosphorus forms of the suspended particulate matter in the Yellow Rive downstream during water and sediment regulation 2008[J]. Environmental Science, 2011, 32(2):368-374.

    Google Scholar

    [33] 于子洋, 杜俊涛, 姚庆祯, 等. 黄河口湿地表层沉积物中磷赋存形态的分析[J]. 环境科学, 2014, 35(3):942-950

    Google Scholar

    YU Ziyang, DU Juntao, YAO Qingzhen, et al. Distribution of phosphorus in surface sediments from the Yellow River Estuary wetland[J]. Environmental Science, 2014, 35(3):942-950.

    Google Scholar

    [34] 于佳真, 王晓昌, 薛涛, 等. 不同温度下西安汉城湖沉积物吸附、释放特性和磷形态[J]. 环境工程学报, 2016, 10(11):6275-6282

    Google Scholar

    YU Jiazhen, WANG Xiaochang, XUE Tao, et al. Phosphorus sorption, release characteristic under different temperature and phosphorus fractions in sediments of Hancheng Lake in Xi’an[J]. Chinese Journal of Environmental Engineering, 2016, 10(11):6275-6282.

    Google Scholar

    [35] 岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J]. 海洋与湖沼, 2007, 38(2):111-117

    Google Scholar

    YUE Weizhong, HUANG Xiaoping, SUN Cuici. Distribution and pollution of nitrogen and phosphorus in surface sediments from the Pearl River Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(2):111-117.

    Google Scholar

    [36] 周爱民, 王东升, 汤鸿霄. 磷(P)在天然沉积物水界面上的吸附[J]. 环境科学学报, 2005, 25(1):64-69

    Google Scholar

    ZHOU Aimin, WANG Dongsheng, TANG Hongxiao. Adsorption of phosphorus on sediment-water interface[J]. Acta Scientiae Circumstantiae, 2005, 25(1):64-69.

    Google Scholar

    [37] Sutula M, Bianchi T S, McKee B A. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico[J]. Limnology and Oceanography, 2004, 49(6):2223-2235. doi: 10.4319/lo.2004.49.6.2223

    CrossRef Google Scholar

    [38] Meng J, Yao P, Yu Z G, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144:27-38. doi: 10.1016/j.ecss.2014.04.015

    CrossRef Google Scholar

    [39] Baken S, Moens C, Van Der Grift B, et al. Phosphate binding by natural iron-rich colloids in streams[J]. Water Research, 2016, 98:326-333. doi: 10.1016/j.watres.2016.04.032

    CrossRef Google Scholar

    [40] Sekula-Wood E, Benitez-Nelson C R, Bennett M A, et al. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California[J]. Global Biogeochemical Cycles, 2012, 26(2):GB2023.

    Google Scholar

    [41] 乔永民, 郭佳, 杨骏, 等. 洱海湖滨带与湖中心带表层沉积物磷的形态对比分析与环境学意义[J]. 生态科学, 2017, 36(4):38-45

    Google Scholar

    QIAO Yongmin, GUO Jia, YANG Jun, et al. Comparative analysis of phosphorus fraction in surface sediment between lakeside and middle zone of Erhai Lake and its environmental significance[J]. Ecological Science, 2017, 36(4):38-45.

    Google Scholar

    [42] Bańkowska-Sobczak A, Blazejczyk A, Eiche E, et al. Phosphorus inactivation in lake sediments using calcite materials and controlled resuspension-mechanism and efficiency[J]. Minerals, 2020, 10(3):223. doi: 10.3390/min10030223

    CrossRef Google Scholar

    [43] 孟佳, 姚庆祯, 陈洪涛, 等. 北黄海表层沉积物中颗粒态磷的形态分布[J]. 环境科学, 2012, 33(10):3361-3367

    Google Scholar

    MENG Jia, YAO Qingzhen, CHEN Hongtao, et al. Forms and distributions of particulate phosphorus in the surface sediments of North Yellow Sea[J]. Environmental Science, 2012, 33(10):3361-3367.

    Google Scholar

    [44] 江雪, 文帅龙, 姚书春, 等. 天津于桥水库沉积物磷赋存特征及其环境意义[J]. 湖泊科学, 2018, 30(3):628-639 doi: 10.18307/2018.0305

    CrossRef Google Scholar

    JIANG Xue, WEN Shuailong, YAO Shuchun, et al. Environmental significance of phosphorus existing forms in the sediments of Yuqiao Reservoir in Tianjin[J]. Journal of Lake Sciences, 2018, 30(3):628-639. doi: 10.18307/2018.0305

    CrossRef Google Scholar

    [45] Yang B, Song G D, Liu S M, et al. Phosphorus recycling and burial in core sediments of the East China Sea[J]. Marine Chemistry, 2017, 192:59-72. doi: 10.1016/j.marchem.2017.04.001

    CrossRef Google Scholar

    [46] Liu S M, Zhang J, Chen H T, et al. Benthic nutrient recycling in shallow coastal waters of the Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 2004, 22(4):365-372. doi: 10.1007/BF02843630

    CrossRef Google Scholar

    [47] Bastami K D, Neyestani M R, Raeisi H, et al. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea[J]. Marine Pollution Bulletin, 2018, 126:51-57. doi: 10.1016/j.marpolbul.2017.10.095

    CrossRef Google Scholar

    [48] 向速林, 吴涛哲, 龚聪远, 等. 去除有机质对城市浅水湖泊氮磷释放特征的影响[J]. 水土保持通报, 2021, 41(5):9-14,74

    Google Scholar

    XIANG Sulin, WU Taozhe, GONG Congyuan, et al. Effects of organic matter removal on nitrogen and phosphorus release characteristics from surface sediments in urban shallow lakes[J]. Bulletin of Soil and Water Conservation, 2021, 41(5):9-14,74.

    Google Scholar

    [49] Zhuang W, Gao X L, Zhang Y, et al. Geochemical characteristics of phosphorus in surface sediments of two major Chinese mariculture areas: The Laizhou Bay and the coastal waters of the Zhangzi Island[J]. Marine Pollution Bulletin, 2014, 83(1):343-351. doi: 10.1016/j.marpolbul.2014.03.040

    CrossRef Google Scholar

    [50] 潘成荣, 汪家权, 郑志侠, 等. 巢湖沉积物中氮与磷赋存形态研究[J]. 生态与农村环境学报, 2007, 23(1):43-47

    Google Scholar

    PAN Chengrong, WANG Jiaquan, ZHENG Zhixia, et al. Forms of phosphorus and nitrogen existing in sediments in Chaohu Lake[J]. Journal of Ecology and Rural Environment, 2007, 23(1):43-47.

    Google Scholar

    [51] Rydin E, Malmaeus J M, Karlsson O M, et al. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1):111-117. doi: 10.1016/j.ecss.2010.12.020

    CrossRef Google Scholar

    [52] Mort H P, Slomp C P, Gustafsson B G, et al. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions[J]. Geochimica et Cosmochimica Acta, 2010, 74(4):1350-1362. doi: 10.1016/j.gca.2009.11.016

    CrossRef Google Scholar

    [53] Lukkari K, Leivuori M, Vallius H, et al. The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea[J]. Biogeochemistry, 2009, 94(2):141-162. doi: 10.1007/s10533-009-9315-y

    CrossRef Google Scholar

    [54] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater[M]//Hill M N. The Sea. New York: Wiley InterScience, 1963.

    Google Scholar

    [55] Coelho J P, Flindt M R, Jensen H S, et al. Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes[J]. Estuarine, Coastal and Shelf Science, 2004, 61(4):583-590. doi: 10.1016/j.ecss.2004.07.001

    CrossRef Google Scholar

    [56] Prasad M B K, Ramanathan A L. Dissolved organic nutrients in the Pichavaram mangrove waters of east coast of India[J]. Indian Journal of Geo-Marine Sciences, 2008, 37(2):141-145.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(835) PDF downloads(60) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint