2023 Vol. 43, No. 5
Article Contents

LU Jian, JIANG Jingbo, LI Anchun, MA Xiaochuan. Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603
Citation: LU Jian, JIANG Jingbo, LI Anchun, MA Xiaochuan. Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603

Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations

More Information
  • One of the major challenges addressing human life safety in the context of global warming is how typhoon activity may develop in the future. Our understanding of typhoon long-term development and evolution mechanisms is limited by the duration of instrumental recording. Extraction of typhoon information from sedimentary records in the muddy area of the East China Sea inner shelf is an effective method for understanding the evolution patterns of typhoons that have impacted China over the past thousands of years. The precision of typhoon event detection, however, might be affected by other extreme events, such as winter cold waves. One of the difficulties in reconstructing typhoon activity is to identify typhoon and winter cold wave deposition events. Using a quadripod observation system placed in the muddy area of the East China Sea inner shelf, seawater temperature, salinity, suspended sediment concentration, and currents during Typhoon Goni and winter cold waves were measured, and the differences in sedimentary dynamic processes between typhoons and winter cold waves were then discussed by combining wind speed, wind direction, and wave data from offshore observation buoys. Observations on typhoons and winter cold waves showed certain similarities in the changes in wind direction, significant wave height, and near-bottom current velocity, but typhoons′ higher strength made it easier to resuspend seabed sediments. Typhoon-related high suspended sediment concentrations are mostly caused by the resuspension of seabed sediments, whereas high suspended sediment concentrations during winter cold waves are primarily caused by Yangtze River discharge. Sand layers in the sedimentary record of the seaward side edge of the inner shelf muddy area in the East China Sea are likely to represent typhoon event deposition because of the difference in the direction of the near-bottom current between typhoons and winter cold waves. Therefore, event deposition layers are good research materials for studying the variation patterns of typhoon activity. The findings of this study can be used as a scientific reference for extracting more accurate typhoon information from sedimentary records of the muddy area in the East China Sea.

  • 加载中
  • [1] Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289-294. doi: 10.1038/nclimate1410

    CrossRef Google Scholar

    [2] Milliman J D, Lin S W, Kao S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004[J]. Geology, 2007, 35(9): 779-782. doi: 10.1130/G23760A.1

    CrossRef Google Scholar

    [3] Siswanto E, Ishizaka J, Morimoto A, et al. Ocean physical and biogeochemical responses to the passage of Typhoon Meari in the East China Sea observed from Argo float and multiplatform satellites[J]. Geophysical Research Letters, 2008, 35(15): L15604. doi: 10.1029/2008GL035040

    CrossRef Google Scholar

    [4] Li Y H, Ye X, Wang A J, et al. Impact of Typhoon Morakot on chlorophyll a distribution on the inner shelf of the East China Sea[J]. Marine Ecology Progress Series, 2013, 483: 19-29. doi: 10.3354/meps10223

    CrossRef Google Scholar

    [5] Woodruff J D, Irish J L, Camargo S J. Coastal flooding by tropical cyclones and sea-level rise[J]. Nature, 2013, 504(7478): 44-52. doi: 10.1038/nature12855

    CrossRef Google Scholar

    [6] Wang B, Chen J F, Jin H Y, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4): 1552-1569. doi: 10.1002/lno.10517

    CrossRef Google Scholar

    [7] Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations[J]. Marine Geology, 2018, 406: 72-83. doi: 10.1016/j.margeo.2018.09.009

    CrossRef Google Scholar

    [8] Elsner J B, Liu K B. Examining the ENSO-typhoon hypothesis[J]. Climate Research, 2003, 25(1): 43-54.

    Google Scholar

    [9] 苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005: 192-249

    Google Scholar

    SU Jilan. Hydrography of China Seas[M]. Beijing: Ocean Press, 2005: 192-249.

    Google Scholar

    [10] Zhou C, Chen P Y, Yang S F, et al. The impact of Typhoon Lekima (2019) on East China: a postevent survey in Wenzhou City and Taizhou City[J]. Frontiers of Earth Science, 2022, 16(1): 109-120. doi: 10.1007/s11707-020-0856-7

    CrossRef Google Scholar

    [11] Mei W, Xie S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753-757. doi: 10.1038/ngeo2792

    CrossRef Google Scholar

    [12] Knutson T R, Sirutis J J, Garner S T, et al. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions[J]. Nature Geoscience, 2008, 1(6): 359-364. doi: 10.1038/ngeo202

    CrossRef Google Scholar

    [13] Knutson T R, McBride J L, Chan J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157-163. doi: 10.1038/ngeo779

    CrossRef Google Scholar

    [14] Wehner M F, Reed K A, Loring B, et al. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols[J]. Earth System Dynamics, 2018, 9(1): 187-195. doi: 10.5194/esd-9-187-2018

    CrossRef Google Scholar

    [15] Emanuel K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12219-12224.

    Google Scholar

    [16] Emanuel K. Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models[J]. Journal of Climate, 2021, 34(1): 57-70. doi: 10.1175/JCLI-D-20-0367.1

    CrossRef Google Scholar

    [17] Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465-468. doi: 10.1038/nature05834

    CrossRef Google Scholar

    [18] Wallace D J, Anderson J B. Evidence of similar probablility of intense hurricane strikes for the Gulf of Mexico over the late Holocene[J]. Geology, 2010, 38(6): 511-514. doi: 10.1130/G30729.1

    CrossRef Google Scholar

    [19] Tian Y, Fan D J, Zhang X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109-121. doi: 10.1016/j.margeo.2018.12.010

    CrossRef Google Scholar

    [20] Yang Y, Piper D J W, Normandeau A, et al. A late Holocene shift of typhoon activity recorded by coastal sedimentary archives in eastern China[J]. Sedimentology, 2022, 69(2): 954-969. doi: 10.1111/sed.12934

    CrossRef Google Scholar

    [21] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    CrossRef Google Scholar

    [22] Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2-16. doi: 10.1016/j.margeo.2018.04.005

    CrossRef Google Scholar

    [23] Xiao S B, Li A C, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8 000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 293-304. doi: 10.1016/j.palaeo.2005.12.003

    CrossRef Google Scholar

    [24] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    CrossRef Google Scholar

    [25] Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151: 1-15. doi: 10.1016/j.jseaes.2017.10.017

    CrossRef Google Scholar

    [26] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4): 705-727 doi: 10.11693/hyhz20200500145

    CrossRef Google Scholar

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727. doi: 10.11693/hyhz20200500145

    CrossRef Google Scholar

    [27] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003

    CrossRef Google Scholar

    [28] Pang C G, Li K, Hu D X. Net accumulation of suspended sediment and its seasonal variability dominated by shelf circulation in the Yellow and East China Seas[J]. Marine Geology, 2016, 371: 33-43. doi: 10.1016/j.margeo.2015.10.017

    CrossRef Google Scholar

    [29] Chen D X, He L, Liu F F, et al. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 194: 229-239. doi: 10.1016/j.ecss.2017.06.026

    CrossRef Google Scholar

    [30] Keen T R, Bentley S J, Chad Vaughan W, et al. The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico[J]. Marine Geology, 2004, 210(1-4): 79-105. doi: 10.1016/j.margeo.2004.05.022

    CrossRef Google Scholar

    [31] Zhou X, Liu Z H, Yan Q, et al. Enhanced tropical cyclone intensity in the Western North Pacific during warm periods over the last two Millennia[J]. Geophysical Research Letters, 2019, 46(15): 9145-9153. doi: 10.1029/2019GL083504

    CrossRef Google Scholar

    [32] Yang S L, Bouma T J, Xu K H, et al. Storms dominate the erosion of the Yangtze Delta and southward sediment transport[J]. Science Bulletin, 2023, 68(6): 553-556. doi: 10.1016/j.scib.2023.03.005

    CrossRef Google Scholar

    [33] Lu J, Li A C, Dong J, et al. Impact of Typhoon Talim on surface sediment records on the East China Sea continental shelf[J]. Estuarine, Coastal and Shelf Science, 2021, 259: 107479. doi: 10.1016/j.ecss.2021.107479

    CrossRef Google Scholar

    [34] Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China[J]. Continental Shelf Research, 2012, 37: 92-100. doi: 10.1016/j.csr.2012.02.020

    CrossRef Google Scholar

    [35] Bian C W, Jiang W S, Song D H. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration[J]. Continental Shelf Research, 2010, 30(10-11): 1189-1199. doi: 10.1016/j.csr.2010.03.008

    CrossRef Google Scholar

    [36] Bian C W, Jiang W S, Quan Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011[J]. Journal of Marine Systems, 2013, 121-122: 24-35. doi: 10.1016/j.jmarsys.2013.03.013

    CrossRef Google Scholar

    [37] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 29-136

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987: 29-136.

    Google Scholar

    [38] Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China[J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080

    CrossRef Google Scholar

    [39] Xu J S, Wang N, Li G X, et al. The dynamic responses of flow and near-bed turbidity to typhoons on the continental shelf of the East China Sea: field observations[J]. Geological Journal, 2016, 51: 12-21. doi: 10.1002/gj.2804

    CrossRef Google Scholar

    [40] Lu J, Li A C, Zhang J, et al. Sedimentary record off the Yangtze River estuary and its response to typhoons and human activities over the past 70 years[J]. Regional Studies in Marine Science, 2023, 65: 103074. doi: 10.1016/j.rsma.2023.103074

    CrossRef Google Scholar

    [41] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81-90

    Google Scholar

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. Basic pattern of transport of suspended matter from the Yellow Sea and East China Sea to the eastern deep seas[J]. Acta Oceanologica Sinica, 1992, 14(2): 81-90.

    Google Scholar

    [42] Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 443-455. doi: 10.1016/S0967-0645(02)00462-9

    CrossRef Google Scholar

    [43] Liu J T, Lee J, Yang R J, et al. Coupling between physical processes and biogeochemistry of suspended particles over the inner shelf mud in the East China Sea[J]. Marine Geology, 2021, 442: 106657. doi: 10.1016/j.margeo.2021.106657

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1155) PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint