Citation: | JIANG Shoushu, ZHAO Debo, TANG Yi, LI Mengjun, WAN Shiming. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 119-135. doi: 10.16562/j.cnki.0256-1492.2023081802 |
Black carbon refers to a series of continuum of carbonaceous substances from incomplete combustion of biomass or fossil fuels or weathering of rocks. Its unique physical and chemical properties have significant impacts on the global climate and environment, such as exacerbating the greenhouse effect, affecting hydrological cycling and carbon sequestration. Due to its relatively stable chemical properties and small carbon isotope fractionation before and after combustion, black carbon has been used as a reliable proxy for the reconstruction of geological time-scale fire history and vegetation evolution. We reviewed the characteristics, sources, cycles, extraction methods in sediments, and their applications in paleoenvironmental reconstruction on different time scales of black carbon, and raised some issues in the current application of black carbon records for paleoenvironmental reconstruction. For example, the impact of the degradation and transformation of black carbon on black carbon deposition, as well as the lag in black carbon age, the complexity in black carbon origination and deposition, and the role of black carbon in carbon cycling at geological time scales, are still unclear. In addition, prospects for future research are presented: Unlike terrestrial soil, lakes, rivers, glaciers, and other carriers, black carbon in marine sediments are poorly studied. For more than half a century, international and national ocean drilling expeditions have obtained a large number of high-quality sedimentary cores in the global oceans, providing a possibility of using black carbon to study the interaction among tectonics, climate, vegetation, fire, and even human activities since the Cenozoic.
[1] | Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1-4):201-213. doi: 10.1016/j.marchem.2004.06.043 |
[2] | Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972):336-339. doi: 10.1038/nature02299 |
[3] | Coppola A I, Wagner S, Lennartz S T, et al. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth & Environment, 2022, 3(8):516-532. |
[4] | Cope M J, Chaloner W G. Fossil charcoal as evidence of past atmospheric composition[J]. Nature, 1980, 283(5748):647-649. doi: 10.1038/283647a0 |
[5] | Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1):294-320. doi: 10.3390/su2010294 |
[6] | Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the national academy of sciences, 2004, 101(2):423-428. doi: 10.1073/pnas.2237157100 |
[7] | Clarke A D, Noone K J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer[J]. Atmospheric Environment, 2007, 41:64-72. doi: 10.1016/j.atmosenv.2007.10.059 |
[8] | 穆燕, 秦小光, 刘嘉麒, 等. 黑碳的研究历史与现状[J]. 海洋地质与第四纪地质, 2011, 31(1):143-155 MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: history and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1):143-155. |
[9] | 刘恋, 周鑫, 葛俊逸. 元素碳碳同位素在古环境研究中的应用[J]. 地质论评, 2012, 58(3):526-532 doi: 10.3969/j.issn.0371-5736.2012.03.013 LIU Lian, ZHOU Xin, GE Junyi. The application of carbon lsotope of element carbon in the research of paleoenvironment[J]. Geological Review, 2012, 58(3):526-532. doi: 10.3969/j.issn.0371-5736.2012.03.013 |
[10] | Kang S C, Zhang Y L, Chen P F, et al. Black carbon and organic carbon dataset over the Third Pole[J]. Earth System Science Data, 2022, 14(2):683-707. doi: 10.5194/essd-14-683-2022 |
[11] | 汪青. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 2012, 32(1):293-310 doi: 10.5846/stxb201011091604 WANG Qing. A review of the environmental behavior and effects of black carbon in soils and sediments[J]. Acta Ecologica Sinica, 2012, 32(1):293-310. doi: 10.5846/stxb201011091604 |
[12] | 吴建育, 吴海斌, 沈佳恒, 等. 全球不同植被类型的C3/C4植物δ13C变化特征[R]. 北京,2054 WU Jianyu, WU Haibin, SHEN Jiaheng, et al. C3/C4 plants of different vegetation types worldwide δ13C variation characteristics[R]. Beijing, 2015. |
[13] | 刘一兰, 张恩楼, 刘恩峰, 等. 人类活动影响下的云南阳宗海近百年有机碳与黑炭湖泊沉积记录[J]. 湖泊科学, 2017, 29(4):1018-1028 doi: 10.18307/2017.0426 LIU Yilan, ZHANG Enlou, LIU Enfeng, et al. TOC and black carbon records in sediment of Lake yangzong, Yunnan Province under the influence of humaan activities during the past century[J]. Journal of Lake Sciences, 2017, 29(4):1018-1028. doi: 10.18307/2017.0426 |
[14] | Vaezzadeh V, Zhong G C, Gligorovski S, et al. Characteristics of dissolved black carbon in riverine surface microlayer[J]. Marine Pollution Bulletin, 2023, 194:115301. doi: 10.1016/j.marpolbul.2023.115301 |
[15] | Dickens A F, Gélinas Y, Hedges J I. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J]. Marine Chemistry, 2004, 92(1-4):215-223. doi: 10.1016/j.marchem.2004.06.027 |
[16] | Brodowski S, Amelung W, Haumaier L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1-2):116-129. doi: 10.1016/j.geoderma.2004.12.019 |
[17] | Ali M U, Siyi L, Yousaf B, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9):857-896. doi: 10.1080/10643389.2020.1738854 |
[18] | Gao C Y, Liu H X, Cong J X, et al. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China[J]. Atmospheric Environment, 2018, 181:61-69. doi: 10.1016/j.atmosenv.2018.03.026 |
[19] | Zhan C L, Wan D J, Han Y M, et al. Historical variation of black carbon and PAHs over the last~ 200 years in central North China: Evidence from lake sediment records[J]. Science of the Total Environment, 2019, 690:891-899. doi: 10.1016/j.scitotenv.2019.07.008 |
[20] | Zhan C L, Cao J J, Han Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau[J]. Science of the Total Environment, 2013, 465:255-266. doi: 10.1016/j.scitotenv.2012.10.113 |
[21] | Pauraitė J, Mordas G, Byčenkienė S, et al. Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania[J]. Atmosphere, 2015, 6(8):1229-1242. doi: 10.3390/atmos6081229 |
[22] | Horvath H. Size segregated light absorption coefficient of the atmospheric aerosol[J]. Atmospheric Environment, 1995, 29(8):875-83. doi: 10.1016/1352-2310(95)00025-T |
[23] | Jacobson M Z. Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D19): ACH 16-1-ACH 16-22. |
[24] | Fierce L, Riemer N, Bond T. Explaining variance in black carbon’s aging timescale[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(13):18703-18737. |
[25] | Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34):7931-7939. doi: 10.1016/j.atmosenv.2008.07.029 |
[26] | Nakane M, Ajioka T, Yamashita Y. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean[J]. Frontiers in Earth Science, 2017, 5:34. doi: 10.3389/feart.2017.00034 |
[27] | Reisser M, Purves R S, Schmidt M W I, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4:80. |
[28] | Bellè S L, Berhe A A, Hagedorn F, et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event[J]. Biogeosciences, 2021, 18(3):1105-1126. doi: 10.5194/bg-18-1105-2021 |
[29] | Masiello C A, Berhe A A. First interactions with the hydrologic cycle determine pyrogenic carbon's fate in the Earth system[J]. Earth Surface Processes and Landforms, 2020, 45(10):2394-2398. doi: 10.1002/esp.4925 |
[30] | Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022 |
[31] | Abiven S, Hengartner P, Schneider M P W, et al. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal[J]. Soil Biology and Biochemistry, 2011, 43(7):1615-1617. doi: 10.1016/j.soilbio.2011.03.027 |
[32] | Jaffé R, Ding Y, Niggemann J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130):345-347. doi: 10.1126/science.1231476 |
[33] | Hanke U M, Reddy C M, Braun A L L, et al. What on earth have we been burning? Deciphering sedimentary records of pyrogenic carbon[J]. Environmental Science & Technology, 2017, 51(21):12972-12980. |
[34] | Coppola A I, Wiedemeier D B, Galy V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11(8):584-588. doi: 10.1038/s41561-018-0159-8 |
[35] | Wagner S, Jaffé R. Effect of photodegradation on molecular size distribution and quality of dissolved black carbon[J]. Organic Geochemistry, 2015, 86:1-4. doi: 10.1016/j.orggeochem.2015.05.005 |
[36] | Ohlson M, Kasin I, Wist A N, et al. Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed[J]. Quaternary Research, 2013, 80(3):417-424. doi: 10.1016/j.yqres.2013.08.009 |
[37] | 陈颖颖, 贺梦晴, 周倩, 等. 鄂东南湖泊水体中颗粒态黑碳分布特征与来源分析: 以磁湖为例[J]. 环境化学, 2024, 43(2):1-10 CHEN Yingying, HE Mengqing, ZHOU Qian, et al. Spatial variation and sources of particulate black carbon in Cihu Lake in Southeast Hubei province[J]. Environmental Chemistry, 2024, 43(2):1-10. |
[38] | Matsui H, Mori T, Ohata S, et al. Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects[J]. Atmospheric Chemistry and Physics, 2022, 22(13):8989-9009. doi: 10.5194/acp-22-8989-2022 |
[39] | Ziolkowski L A, Druffel E R M. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 2010, 37(16):L16601. |
[40] | Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12):1778-1790. doi: 10.1002/2016GB005509 |
[41] | Stubbins A, Niggemann J, Dittmar T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5):1661-1670. doi: 10.5194/bg-9-1661-2012 |
[42] | Yamashita Y, Nakane M, Mori Y, et al. Fate of dissolved black carbon in the deep Pacific Ocean[J]. Nature Communications, 2022, 13(1):307. doi: 10.1038/s41467-022-27954-0 |
[43] | Hammes K, Schmidt M W I, Smernik R J, et al. Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3):GB3016. |
[44] | 邱敬, 高人, 杨玉盛, 等. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 2009, 4(1):88-94 doi: 10.3969/j.issn.1673-7105.2009.01.012 QIU Jing, GAO Ren, YAGN Yusheng, et al. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 2009, 4(1):88-94. doi: 10.3969/j.issn.1673-7105.2009.01.012 |
[45] | 王旭, 于赤灵, 彭平安, 等. 沉积物中黑碳的提取和测定方法: 误差分析和回收率实验[J]. 地球化学, 2001, 30(5):439-444 WANG Xu, YU Chiling, PENG Ping’an, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5):439-444. |
[46] | Elmquist M, Gustafsson Ö, Andersson P. Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pretreatments and standard additions approaches[J]. Limnology and Oceanography:Methods, 2004, 2(12):417-427. doi: 10.4319/lom.2004.2.417 |
[47] | Simpson M J, Hatcher P G. Overestimates of black carbon in soils and sediments[J]. Naturwissenschaften, 2004, 91(9):436-440. |
[48] | Nguyen T H, Brown R A, Ball W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3):217-234. doi: 10.1016/j.orggeochem.2003.09.005 |
[49] | Poot A, Quik J T K, Veld H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography A, 2009, 1216(3):613-622. doi: 10.1016/j.chroma.2008.08.011 |
[50] | Bornemann L, Welp G, Brodowski S, et al. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy[J]. Organic Geochemistry, 2008, 39(11):1537-1544. doi: 10.1016/j.orggeochem.2008.07.012 |
[51] | Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4):569-574. doi: 10.1016/j.chemosphere.2007.03.024 |
[52] | 魏科, 陈文, 徐路扬, 等. 平流层放大火灾的全球气候影响[J]. 中国科学: 地球科学, 2020, 50(2): 318-320 WEI Ke, CHEN Wen, XU Luyang, et al. Stratosphere amplifies the global climate effect of wildfires[J]. Science China Earth Sciences, 2020, 63(2): 309-311. |
[53] | 韩建军, 曾前. 我国气候异常对森林火灾发生的影响[J]. 森林防火, 2003(1):15-16 doi: 10.3969/j.issn.1002-2511.2003.01.009 HAN Jianjun, ZENG Qian. The effect of unusual climate in our country on forest fire[J]. Forest Fire Prevention, 2003(1):15-16. doi: 10.3969/j.issn.1002-2511.2003.01.009 |
[54] | 裴文强. 中国边缘海黑碳记录的长江、珠江流域火历史[D]. 中国科学院大学博士学位论文, 2020 PEI Wenqiang. Fire history in the Yangtze River and Pearl River Basins: black arbon records from the China seas[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2020. |
[55] | Ren G Y. Changes in forest cover in China during the Holocene[J]. Vegetation History and Archaeobotany, 2007, 16(2):119-126. |
[56] | 邱扬. 森林植被的自然火干扰[J]. 生态学杂志, 1998, 17(1):54-60 doi: 10.3321/j.issn:1000-4890.1998.01.009 QIU Yang. Natural fire disturbance of forest vegetation[J]. Chinese Journal of Ecology, 1998, 17(1):54-60. doi: 10.3321/j.issn:1000-4890.1998.01.009 |
[57] | Jiao S L, Zhang H, Cai Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614:118193. doi: 10.1016/j.jpgl.2023.118193 |
[58] | Duffin K I. The representation of rainfall and fire intensity in fossil pollen and charcoal records from a South African savanna[J]. Review of Palaeobotany and Palynology, 2008, 151(1-2):59-71. doi: 10.1016/j.revpalbo.2008.02.004 |
[59] | Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695):767-769. doi: 10.1038/29507 |
[60] | Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):9-19. doi: 10.1016/j.palaeo.2005.03.023 |
[61] | Verardo D J, Ruddiman W F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance[J]. Geology, 1996, 24(9):855-857. doi: 10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2 |
[62] | Hanselman J A, Bush M B, Gosling W D, et al. A 370, 000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1-4):201-214. doi: 10.1016/j.palaeo.2011.03.002 |
[63] | Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003. |
[64] | Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23, 000 14C yr B. P. paleosol and floodplain soils, southeastern West Virginia, USA[J]. Quaternary Research, 2005, 63(2):136-149. doi: 10.1016/j.yqres.2004.10.005 |
[65] | Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11(4):3699-3728. |
[66] | Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3:89-92. doi: 10.1016/j.ancene.2014.02.002 |
[67] | 方引, 陈颖军, 林田, 等. 黑碳在渤海泥质区的百年沉积记录[J]. 海洋学报, 2014, 36(5):98-106 FANG Yin, CHEN Yingjun, LIN Tian, et al. One hundred year sedimentary record of black carbon from mud area in Bohai Sea, China[J]. Acta Oceanologica Sinica, 2014, 36(5):98-106. |
[68] | Neupane B, Kang S C, Chen P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan - Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10):5641-5651. |
[69] | Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59:18-29. doi: 10.1016/j.quascirev.2012.10.033 |
[70] | 裴文强, 万世明, 谭扬, 等. 过去5万年来珠江流域火历史的南海沉积记录[J]. 海洋地质与第四纪地质, 2017, 37(3):47-57 doi: 10.16562/j.cnki.0256-1492.2017.03.005 PEI Wenqiang, WAN Shiming, TAN Yang, et al. Fire history in pearl river basin since 50 kaBP: sediment records from the south China sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):47-57. doi: 10.16562/j.cnki.0256-1492.2017.03.005 |
[71] | Zhang Y, Cui Q Y, Blockley S, et al. Fire history in the qinling mountains of east‐central china since the last Glacial Maximum[J]. Geophysical Research Letters, 2023, 50(10):e2023GL102848. doi: 10.1029/2023GL102848 |
[72] | Pei W Q, Wan S M, Clift P D, et al. Farming stimulated stronger chemical weathering in South China since 3.0 ka BP[J]. Quaternary Science Reviews, 2023, 307:108065. doi: 10.1016/j.quascirev.2023.108065 |
[73] | Pei W Q, Wan S M, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230:106165. doi: 10.1016/j.quascirev.2020.106165 |
[74] | 饶志国, 朱照宇, 贾国东, 等. 环北太平洋地区现代植被中C3/C4植物相对丰度与气候条件关系研究[J]. 科学通报, 2010, 55(12): 1134-1140 RAO Zhiguo, ZHU Zhaoyu, JIA Guodong, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18): 1931-1936. |
[75] | Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246):163-166. doi: 10.1038/342163a0 |
[76] | Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4):91-116. doi: 10.1016/0031-0182(94)00108-K |
[77] | Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367(6459):162-165. doi: 10.1038/367162a0 |
[78] | Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647):153-158. doi: 10.1038/38229 |
[79] | Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1439-1454. doi: 10.1016/S0016-7037(00)00573-1 |
[80] | Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J]. Geology, 2007, 35(6):531-534. doi: 10.1130/G23666A.1 |
[81] | Wang Y, Deng T. A 25 m. y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1-2):322-338. doi: 10.1016/j.jpgl.2005.05.006 |
[82] | Ségalen L, Renard M, Lee-Thorp J A, et al. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O[J]. Earth and Planetary Science Letters, 2006, 244(3-4):725-734. doi: 10.1016/j.jpgl.2005.12.012 |
[83] | Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2 |
[84] | Peppe D J, Cote S M, Deino A L, et al. Oldest evidence of abundant C4 grasses and habitat heterogeneity in eastern Africa[J]. Science, 2023, 380(6641):173-177. doi: 10.1126/science.abq2834 |
[85] | Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056 |
[86] | Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35Ma: Black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079 |
[87] | Zhou B, Shen C D, Sun W D, et al. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1 |
[88] | Zhou B, Bird M, Zheng H B, et al. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 2017, 7(1):170. doi: 10.1038/s41598-017-00285-7 |
[89] | Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 Million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026 |
[90] | 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(18): 1633-45 RAO Zhiguo, CHEN Fahu, ZHANG Xiao, et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms[J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035. |
[91] | Huang Y S, Street-Perrott F A, Perrott R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1383-1404. doi: 10.1016/S0016-7037(99)00074-5 |
[92] | Ficken K J, Street-Perrott F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7):1701-1719. doi: 10.1016/S0146-6380(98)00109-0 |
[93] | Olago D O, Street-Perrott F A, Perrott R A, et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya[J]. Journal of African Earth Sciences, 1999, 29(3):593-618. doi: 10.1016/S0899-5362(99)00117-7 |
[94] | Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years[J]. Quaternary International, 1997, 37:67-71. doi: 10.1016/1040-6182(96)00002-X |
[95] | He J, Jia G D, Li L, et al. Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation[J]. Global and Planetary Change, 2017, 156:26-33. doi: 10.1016/j.gloplacha.2017.08.001 |
[96] | Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2008, 27(13-14):1396-1409. doi: 10.1016/j.quascirev.2008.04.005 |
[97] | Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science, 2004, 304(5679):1955-1959. doi: 10.1126/science.1092995 |
[98] | Krishnamurthy R V, DeNiro M J, Pant R K. Isotope evidence for Pleistocene climatic changes in Kashmir, India[J]. Nature, 1982, 298(5875):640-641. doi: 10.1038/298640a0 |
[99] | Nordt L C, Boutton T W, Jacob J S, et al. C4 plant productivity and climate-CO2 variations in South-central texas during the late quaternary[J]. Quaternary Research, 2002, 58(2):182-188. doi: 10.1006/qres.2002.2344 |
[100] | Rao Z G, Zhu Z Y, Jia G D, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18):1931-1936. doi: 10.1007/s11434-010-3101-z |
[101] | Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4):287-294. doi: 10.1016/S0146-6380(99)00164-3 |
[102] | Hatté C, Antoine P, Fontugne M, et al. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany)[J]. Quaternary International, 1999, 62(1):85-91. doi: 10.1016/S1040-6182(99)00026-9 |
[103] | Jiang W Q, Wu H B, Li Q, et al. Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518:10-21. doi: 10.1016/j.palaeo.2018.12.021 |
[104] | Chen Z M Z, Wan S M, Zhang J, et al. Human impact overwhelms long-term climatic control on C4 vegetation in the Yellow River Basin after 3 ka BP[J]. Geosystems and Geoenvironment, 2022, 1(2):100021. doi: 10.1016/j.geogeo.2021.100021 |
[105] | Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:86-94. doi: 10.1016/j.palaeo.2015.06.004 |
[106] | Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301. |
[107] | Li M, Bao F X, Zhang Y, et al. Photochemical aging of soot in the aqueous phase: release of dissolved black carbon and the formation of 1O2[J]. Environmental Science & Technology, 2019, 53(21):12311-12319. |
[108] | Marques J S J, Dittmar T, Niggemann J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5:11. |
[109] | Bostick K W, Zimmerman A R, Goranov A I, et al. Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars[J]. Science of the Total Environment, 2020, 724:138198. doi: 10.1016/j.scitotenv.2020.138198 |
[110] | Jones M W, De Aragão L E O C, Dittmar T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7):849-874. doi: 10.1029/2018GB006140 |
[111] | Masiello C A, Druffel E R M. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4):1185. |
[112] | Suman D O, Kuhlbusch T A J, Lim B. Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion[M]//Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer, 1997. |
[113] | Wagner S, Brandes J, Spencer R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1):5064. doi: 10.1038/s41467-019-13111-7 |
[114] | Rossel P E, Stubbins A, Rebling T, et al. Thermally altered marine dissolved organic matter in hydrothermal fluids[J]. Organic Geochemistry, 2017, 110:73-86. doi: 10.1016/j.orggeochem.2017.05.003 |
[115] | Karthik V, Bhaskar B V, Ramachandran S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. Science of the Total Environment, 2023, 854:158647. doi: 10.1016/j.scitotenv.2022.158647 |
Characteristics of black carbon combustion continuum[3]
The role of black carbon in global climate change[3]
The cycle of black carbon in the nature[3]
Location of the sites mentioned in this study
Reconstruction of fire history during glacial-interglacial cycles
Evolution of East Asian fire activity in the Holocene
Reconstruction records of global vegetation evolution history on tectonic scale.
Reconstruction of vegetation evolution history on the orbital-millennial time scales