2023 Vol. 43, No. 5
Article Contents

JIANG Shoushu, ZHAO Debo, TANG Yi, LI Mengjun, WAN Shiming. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 119-135. doi: 10.16562/j.cnki.0256-1492.2023081802
Citation: JIANG Shoushu, ZHAO Debo, TANG Yi, LI Mengjun, WAN Shiming. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 119-135. doi: 10.16562/j.cnki.0256-1492.2023081802

Application of black carbon in sediments in paleoenvironment and paleoclimate studies

More Information
  • Black carbon refers to a series of continuum of carbonaceous substances from incomplete combustion of biomass or fossil fuels or weathering of rocks. Its unique physical and chemical properties have significant impacts on the global climate and environment, such as exacerbating the greenhouse effect, affecting hydrological cycling and carbon sequestration. Due to its relatively stable chemical properties and small carbon isotope fractionation before and after combustion, black carbon has been used as a reliable proxy for the reconstruction of geological time-scale fire history and vegetation evolution. We reviewed the characteristics, sources, cycles, extraction methods in sediments, and their applications in paleoenvironmental reconstruction on different time scales of black carbon, and raised some issues in the current application of black carbon records for paleoenvironmental reconstruction. For example, the impact of the degradation and transformation of black carbon on black carbon deposition, as well as the lag in black carbon age, the complexity in black carbon origination and deposition, and the role of black carbon in carbon cycling at geological time scales, are still unclear. In addition, prospects for future research are presented: Unlike terrestrial soil, lakes, rivers, glaciers, and other carriers, black carbon in marine sediments are poorly studied. For more than half a century, international and national ocean drilling expeditions have obtained a large number of high-quality sedimentary cores in the global oceans, providing a possibility of using black carbon to study the interaction among tectonics, climate, vegetation, fire, and even human activities since the Cenozoic.

  • 加载中
  • [1] Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1-4):201-213. doi: 10.1016/j.marchem.2004.06.043

    CrossRef Google Scholar

    [2] Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972):336-339. doi: 10.1038/nature02299

    CrossRef Google Scholar

    [3] Coppola A I, Wagner S, Lennartz S T, et al. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth & Environment, 2022, 3(8):516-532.

    Google Scholar

    [4] Cope M J, Chaloner W G. Fossil charcoal as evidence of past atmospheric composition[J]. Nature, 1980, 283(5748):647-649. doi: 10.1038/283647a0

    CrossRef Google Scholar

    [5] Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1):294-320. doi: 10.3390/su2010294

    CrossRef Google Scholar

    [6] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the national academy of sciences, 2004, 101(2):423-428. doi: 10.1073/pnas.2237157100

    CrossRef Google Scholar

    [7] Clarke A D, Noone K J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer[J]. Atmospheric Environment, 2007, 41:64-72. doi: 10.1016/j.atmosenv.2007.10.059

    CrossRef Google Scholar

    [8] 穆燕, 秦小光, 刘嘉麒, 等. 黑碳的研究历史与现状[J]. 海洋地质与第四纪地质, 2011, 31(1):143-155

    Google Scholar

    MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: history and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1):143-155.

    Google Scholar

    [9] 刘恋, 周鑫, 葛俊逸. 元素碳碳同位素在古环境研究中的应用[J]. 地质论评, 2012, 58(3):526-532 doi: 10.3969/j.issn.0371-5736.2012.03.013

    CrossRef Google Scholar

    LIU Lian, ZHOU Xin, GE Junyi. The application of carbon lsotope of element carbon in the research of paleoenvironment[J]. Geological Review, 2012, 58(3):526-532. doi: 10.3969/j.issn.0371-5736.2012.03.013

    CrossRef Google Scholar

    [10] Kang S C, Zhang Y L, Chen P F, et al. Black carbon and organic carbon dataset over the Third Pole[J]. Earth System Science Data, 2022, 14(2):683-707. doi: 10.5194/essd-14-683-2022

    CrossRef Google Scholar

    [11] 汪青. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 2012, 32(1):293-310 doi: 10.5846/stxb201011091604

    CrossRef Google Scholar

    WANG Qing. A review of the environmental behavior and effects of black carbon in soils and sediments[J]. Acta Ecologica Sinica, 2012, 32(1):293-310. doi: 10.5846/stxb201011091604

    CrossRef Google Scholar

    [12] 吴建育, 吴海斌, 沈佳恒, 等. 全球不同植被类型的C3/C4植物δ13C变化特征[R]. 北京,2054

    Google Scholar

    WU Jianyu, WU Haibin, SHEN Jiaheng, et al. C3/C4 plants of different vegetation types worldwide δ13C variation characteristics[R]. Beijing, 2015.

    Google Scholar

    [13] 刘一兰, 张恩楼, 刘恩峰, 等. 人类活动影响下的云南阳宗海近百年有机碳与黑炭湖泊沉积记录[J]. 湖泊科学, 2017, 29(4):1018-1028 doi: 10.18307/2017.0426

    CrossRef Google Scholar

    LIU Yilan, ZHANG Enlou, LIU Enfeng, et al. TOC and black carbon records in sediment of Lake yangzong, Yunnan Province under the influence of humaan activities during the past century[J]. Journal of Lake Sciences, 2017, 29(4):1018-1028. doi: 10.18307/2017.0426

    CrossRef Google Scholar

    [14] Vaezzadeh V, Zhong G C, Gligorovski S, et al. Characteristics of dissolved black carbon in riverine surface microlayer[J]. Marine Pollution Bulletin, 2023, 194:115301. doi: 10.1016/j.marpolbul.2023.115301

    CrossRef Google Scholar

    [15] Dickens A F, Gélinas Y, Hedges J I. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J]. Marine Chemistry, 2004, 92(1-4):215-223. doi: 10.1016/j.marchem.2004.06.027

    CrossRef Google Scholar

    [16] Brodowski S, Amelung W, Haumaier L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1-2):116-129. doi: 10.1016/j.geoderma.2004.12.019

    CrossRef Google Scholar

    [17] Ali M U, Siyi L, Yousaf B, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9):857-896. doi: 10.1080/10643389.2020.1738854

    CrossRef Google Scholar

    [18] Gao C Y, Liu H X, Cong J X, et al. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China[J]. Atmospheric Environment, 2018, 181:61-69. doi: 10.1016/j.atmosenv.2018.03.026

    CrossRef Google Scholar

    [19] Zhan C L, Wan D J, Han Y M, et al. Historical variation of black carbon and PAHs over the last~ 200 years in central North China: Evidence from lake sediment records[J]. Science of the Total Environment, 2019, 690:891-899. doi: 10.1016/j.scitotenv.2019.07.008

    CrossRef Google Scholar

    [20] Zhan C L, Cao J J, Han Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau[J]. Science of the Total Environment, 2013, 465:255-266. doi: 10.1016/j.scitotenv.2012.10.113

    CrossRef Google Scholar

    [21] Pauraitė J, Mordas G, Byčenkienė S, et al. Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania[J]. Atmosphere, 2015, 6(8):1229-1242. doi: 10.3390/atmos6081229

    CrossRef Google Scholar

    [22] Horvath H. Size segregated light absorption coefficient of the atmospheric aerosol[J]. Atmospheric Environment, 1995, 29(8):875-83. doi: 10.1016/1352-2310(95)00025-T

    CrossRef Google Scholar

    [23] Jacobson M Z. Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D19): ACH 16-1-ACH 16-22.

    Google Scholar

    [24] Fierce L, Riemer N, Bond T. Explaining variance in black carbon’s aging timescale[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(13):18703-18737.

    Google Scholar

    [25] Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34):7931-7939. doi: 10.1016/j.atmosenv.2008.07.029

    CrossRef Google Scholar

    [26] Nakane M, Ajioka T, Yamashita Y. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean[J]. Frontiers in Earth Science, 2017, 5:34. doi: 10.3389/feart.2017.00034

    CrossRef Google Scholar

    [27] Reisser M, Purves R S, Schmidt M W I, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4:80.

    Google Scholar

    [28] Bellè S L, Berhe A A, Hagedorn F, et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event[J]. Biogeosciences, 2021, 18(3):1105-1126. doi: 10.5194/bg-18-1105-2021

    CrossRef Google Scholar

    [29] Masiello C A, Berhe A A. First interactions with the hydrologic cycle determine pyrogenic carbon's fate in the Earth system[J]. Earth Surface Processes and Landforms, 2020, 45(10):2394-2398. doi: 10.1002/esp.4925

    CrossRef Google Scholar

    [30] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022

    CrossRef Google Scholar

    [31] Abiven S, Hengartner P, Schneider M P W, et al. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal[J]. Soil Biology and Biochemistry, 2011, 43(7):1615-1617. doi: 10.1016/j.soilbio.2011.03.027

    CrossRef Google Scholar

    [32] Jaffé R, Ding Y, Niggemann J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130):345-347. doi: 10.1126/science.1231476

    CrossRef Google Scholar

    [33] Hanke U M, Reddy C M, Braun A L L, et al. What on earth have we been burning? Deciphering sedimentary records of pyrogenic carbon[J]. Environmental Science & Technology, 2017, 51(21):12972-12980.

    Google Scholar

    [34] Coppola A I, Wiedemeier D B, Galy V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11(8):584-588. doi: 10.1038/s41561-018-0159-8

    CrossRef Google Scholar

    [35] Wagner S, Jaffé R. Effect of photodegradation on molecular size distribution and quality of dissolved black carbon[J]. Organic Geochemistry, 2015, 86:1-4. doi: 10.1016/j.orggeochem.2015.05.005

    CrossRef Google Scholar

    [36] Ohlson M, Kasin I, Wist A N, et al. Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed[J]. Quaternary Research, 2013, 80(3):417-424. doi: 10.1016/j.yqres.2013.08.009

    CrossRef Google Scholar

    [37] 陈颖颖, 贺梦晴, 周倩, 等. 鄂东南湖泊水体中颗粒态黑碳分布特征与来源分析: 以磁湖为例[J]. 环境化学, 2024, 43(2):1-10

    Google Scholar

    CHEN Yingying, HE Mengqing, ZHOU Qian, et al. Spatial variation and sources of particulate black carbon in Cihu Lake in Southeast Hubei province[J]. Environmental Chemistry, 2024, 43(2):1-10.

    Google Scholar

    [38] Matsui H, Mori T, Ohata S, et al. Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects[J]. Atmospheric Chemistry and Physics, 2022, 22(13):8989-9009. doi: 10.5194/acp-22-8989-2022

    CrossRef Google Scholar

    [39] Ziolkowski L A, Druffel E R M. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 2010, 37(16):L16601.

    Google Scholar

    [40] Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12):1778-1790. doi: 10.1002/2016GB005509

    CrossRef Google Scholar

    [41] Stubbins A, Niggemann J, Dittmar T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5):1661-1670. doi: 10.5194/bg-9-1661-2012

    CrossRef Google Scholar

    [42] Yamashita Y, Nakane M, Mori Y, et al. Fate of dissolved black carbon in the deep Pacific Ocean[J]. Nature Communications, 2022, 13(1):307. doi: 10.1038/s41467-022-27954-0

    CrossRef Google Scholar

    [43] Hammes K, Schmidt M W I, Smernik R J, et al. Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3):GB3016.

    Google Scholar

    [44] 邱敬, 高人, 杨玉盛, 等. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 2009, 4(1):88-94 doi: 10.3969/j.issn.1673-7105.2009.01.012

    CrossRef Google Scholar

    QIU Jing, GAO Ren, YAGN Yusheng, et al. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 2009, 4(1):88-94. doi: 10.3969/j.issn.1673-7105.2009.01.012

    CrossRef Google Scholar

    [45] 王旭, 于赤灵, 彭平安, 等. 沉积物中黑碳的提取和测定方法: 误差分析和回收率实验[J]. 地球化学, 2001, 30(5):439-444

    Google Scholar

    WANG Xu, YU Chiling, PENG Ping’an, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5):439-444.

    Google Scholar

    [46] Elmquist M, Gustafsson Ö, Andersson P. Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pretreatments and standard additions approaches[J]. Limnology and Oceanography:Methods, 2004, 2(12):417-427. doi: 10.4319/lom.2004.2.417

    CrossRef Google Scholar

    [47] Simpson M J, Hatcher P G. Overestimates of black carbon in soils and sediments[J]. Naturwissenschaften, 2004, 91(9):436-440.

    Google Scholar

    [48] Nguyen T H, Brown R A, Ball W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3):217-234. doi: 10.1016/j.orggeochem.2003.09.005

    CrossRef Google Scholar

    [49] Poot A, Quik J T K, Veld H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography A, 2009, 1216(3):613-622. doi: 10.1016/j.chroma.2008.08.011

    CrossRef Google Scholar

    [50] Bornemann L, Welp G, Brodowski S, et al. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy[J]. Organic Geochemistry, 2008, 39(11):1537-1544. doi: 10.1016/j.orggeochem.2008.07.012

    CrossRef Google Scholar

    [51] Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4):569-574. doi: 10.1016/j.chemosphere.2007.03.024

    CrossRef Google Scholar

    [52] 魏科, 陈文, 徐路扬, 等. 平流层放大火灾的全球气候影响[J]. 中国科学: 地球科学, 2020, 50(2): 318-320

    Google Scholar

    WEI Ke, CHEN Wen, XU Luyang, et al. Stratosphere amplifies the global climate effect of wildfires[J]. Science China Earth Sciences, 2020, 63(2): 309-311.

    Google Scholar

    [53] 韩建军, 曾前. 我国气候异常对森林火灾发生的影响[J]. 森林防火, 2003(1):15-16 doi: 10.3969/j.issn.1002-2511.2003.01.009

    CrossRef Google Scholar

    HAN Jianjun, ZENG Qian. The effect of unusual climate in our country on forest fire[J]. Forest Fire Prevention, 2003(1):15-16. doi: 10.3969/j.issn.1002-2511.2003.01.009

    CrossRef Google Scholar

    [54] 裴文强. 中国边缘海黑碳记录的长江、珠江流域火历史[D]. 中国科学院大学博士学位论文, 2020

    Google Scholar

    PEI Wenqiang. Fire history in the Yangtze River and Pearl River Basins: black arbon records from the China seas[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2020.

    Google Scholar

    [55] Ren G Y. Changes in forest cover in China during the Holocene[J]. Vegetation History and Archaeobotany, 2007, 16(2):119-126.

    Google Scholar

    [56] 邱扬. 森林植被的自然火干扰[J]. 生态学杂志, 1998, 17(1):54-60 doi: 10.3321/j.issn:1000-4890.1998.01.009

    CrossRef Google Scholar

    QIU Yang. Natural fire disturbance of forest vegetation[J]. Chinese Journal of Ecology, 1998, 17(1):54-60. doi: 10.3321/j.issn:1000-4890.1998.01.009

    CrossRef Google Scholar

    [57] Jiao S L, Zhang H, Cai Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614:118193. doi: 10.1016/j.jpgl.2023.118193

    CrossRef Google Scholar

    [58] Duffin K I. The representation of rainfall and fire intensity in fossil pollen and charcoal records from a South African savanna[J]. Review of Palaeobotany and Palynology, 2008, 151(1-2):59-71. doi: 10.1016/j.revpalbo.2008.02.004

    CrossRef Google Scholar

    [59] Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695):767-769. doi: 10.1038/29507

    CrossRef Google Scholar

    [60] Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):9-19. doi: 10.1016/j.palaeo.2005.03.023

    CrossRef Google Scholar

    [61] Verardo D J, Ruddiman W F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance[J]. Geology, 1996, 24(9):855-857. doi: 10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2

    CrossRef Google Scholar

    [62] Hanselman J A, Bush M B, Gosling W D, et al. A 370, 000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1-4):201-214. doi: 10.1016/j.palaeo.2011.03.002

    CrossRef Google Scholar

    [63] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    Google Scholar

    [64] Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23, 000 14C yr B. P. paleosol and floodplain soils, southeastern West Virginia, USA[J]. Quaternary Research, 2005, 63(2):136-149. doi: 10.1016/j.yqres.2004.10.005

    CrossRef Google Scholar

    [65] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11(4):3699-3728.

    Google Scholar

    [66] Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3:89-92. doi: 10.1016/j.ancene.2014.02.002

    CrossRef Google Scholar

    [67] 方引, 陈颖军, 林田, 等. 黑碳在渤海泥质区的百年沉积记录[J]. 海洋学报, 2014, 36(5):98-106

    Google Scholar

    FANG Yin, CHEN Yingjun, LIN Tian, et al. One hundred year sedimentary record of black carbon from mud area in Bohai Sea, China[J]. Acta Oceanologica Sinica, 2014, 36(5):98-106.

    Google Scholar

    [68] Neupane B, Kang S C, Chen P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan - Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10):5641-5651.

    Google Scholar

    [69] Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59:18-29. doi: 10.1016/j.quascirev.2012.10.033

    CrossRef Google Scholar

    [70] 裴文强, 万世明, 谭扬, 等. 过去5万年来珠江流域火历史的南海沉积记录[J]. 海洋地质与第四纪地质, 2017, 37(3):47-57 doi: 10.16562/j.cnki.0256-1492.2017.03.005

    CrossRef Google Scholar

    PEI Wenqiang, WAN Shiming, TAN Yang, et al. Fire history in pearl river basin since 50 kaBP: sediment records from the south China sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):47-57. doi: 10.16562/j.cnki.0256-1492.2017.03.005

    CrossRef Google Scholar

    [71] Zhang Y, Cui Q Y, Blockley S, et al. Fire history in the qinling mountains of east‐central china since the last Glacial Maximum[J]. Geophysical Research Letters, 2023, 50(10):e2023GL102848. doi: 10.1029/2023GL102848

    CrossRef Google Scholar

    [72] Pei W Q, Wan S M, Clift P D, et al. Farming stimulated stronger chemical weathering in South China since 3.0 ka BP[J]. Quaternary Science Reviews, 2023, 307:108065. doi: 10.1016/j.quascirev.2023.108065

    CrossRef Google Scholar

    [73] Pei W Q, Wan S M, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230:106165. doi: 10.1016/j.quascirev.2020.106165

    CrossRef Google Scholar

    [74] 饶志国, 朱照宇, 贾国东, 等. 环北太平洋地区现代植被中C3/C4植物相对丰度与气候条件关系研究[J]. 科学通报, 2010, 55(12): 1134-1140

    Google Scholar

    RAO Zhiguo, ZHU Zhaoyu, JIA Guodong, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18): 1931-1936.

    Google Scholar

    [75] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246):163-166. doi: 10.1038/342163a0

    CrossRef Google Scholar

    [76] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4):91-116. doi: 10.1016/0031-0182(94)00108-K

    CrossRef Google Scholar

    [77] Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367(6459):162-165. doi: 10.1038/367162a0

    CrossRef Google Scholar

    [78] Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647):153-158. doi: 10.1038/38229

    CrossRef Google Scholar

    [79] Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1439-1454. doi: 10.1016/S0016-7037(00)00573-1

    CrossRef Google Scholar

    [80] Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J]. Geology, 2007, 35(6):531-534. doi: 10.1130/G23666A.1

    CrossRef Google Scholar

    [81] Wang Y, Deng T. A 25 m. y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1-2):322-338. doi: 10.1016/j.jpgl.2005.05.006

    CrossRef Google Scholar

    [82] Ségalen L, Renard M, Lee-Thorp J A, et al. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O[J]. Earth and Planetary Science Letters, 2006, 244(3-4):725-734. doi: 10.1016/j.jpgl.2005.12.012

    CrossRef Google Scholar

    [83] Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2

    CrossRef Google Scholar

    [84] Peppe D J, Cote S M, Deino A L, et al. Oldest evidence of abundant C4 grasses and habitat heterogeneity in eastern Africa[J]. Science, 2023, 380(6641):173-177. doi: 10.1126/science.abq2834

    CrossRef Google Scholar

    [85] Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056

    CrossRef Google Scholar

    [86] Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35Ma: Black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079

    CrossRef Google Scholar

    [87] Zhou B, Shen C D, Sun W D, et al. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1

    CrossRef Google Scholar

    [88] Zhou B, Bird M, Zheng H B, et al. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 2017, 7(1):170. doi: 10.1038/s41598-017-00285-7

    CrossRef Google Scholar

    [89] Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 Million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026

    CrossRef Google Scholar

    [90] 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(18): 1633-45

    Google Scholar

    RAO Zhiguo, CHEN Fahu, ZHANG Xiao, et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms[J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035.

    Google Scholar

    [91] Huang Y S, Street-Perrott F A, Perrott R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1383-1404. doi: 10.1016/S0016-7037(99)00074-5

    CrossRef Google Scholar

    [92] Ficken K J, Street-Perrott F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7):1701-1719. doi: 10.1016/S0146-6380(98)00109-0

    CrossRef Google Scholar

    [93] Olago D O, Street-Perrott F A, Perrott R A, et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya[J]. Journal of African Earth Sciences, 1999, 29(3):593-618. doi: 10.1016/S0899-5362(99)00117-7

    CrossRef Google Scholar

    [94] Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years[J]. Quaternary International, 1997, 37:67-71. doi: 10.1016/1040-6182(96)00002-X

    CrossRef Google Scholar

    [95] He J, Jia G D, Li L, et al. Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation[J]. Global and Planetary Change, 2017, 156:26-33. doi: 10.1016/j.gloplacha.2017.08.001

    CrossRef Google Scholar

    [96] Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2008, 27(13-14):1396-1409. doi: 10.1016/j.quascirev.2008.04.005

    CrossRef Google Scholar

    [97] Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science, 2004, 304(5679):1955-1959. doi: 10.1126/science.1092995

    CrossRef Google Scholar

    [98] Krishnamurthy R V, DeNiro M J, Pant R K. Isotope evidence for Pleistocene climatic changes in Kashmir, India[J]. Nature, 1982, 298(5875):640-641. doi: 10.1038/298640a0

    CrossRef Google Scholar

    [99] Nordt L C, Boutton T W, Jacob J S, et al. C4 plant productivity and climate-CO2 variations in South-central texas during the late quaternary[J]. Quaternary Research, 2002, 58(2):182-188. doi: 10.1006/qres.2002.2344

    CrossRef Google Scholar

    [100] Rao Z G, Zhu Z Y, Jia G D, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18):1931-1936. doi: 10.1007/s11434-010-3101-z

    CrossRef Google Scholar

    [101] Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4):287-294. doi: 10.1016/S0146-6380(99)00164-3

    CrossRef Google Scholar

    [102] Hatté C, Antoine P, Fontugne M, et al. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany)[J]. Quaternary International, 1999, 62(1):85-91. doi: 10.1016/S1040-6182(99)00026-9

    CrossRef Google Scholar

    [103] Jiang W Q, Wu H B, Li Q, et al. Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518:10-21. doi: 10.1016/j.palaeo.2018.12.021

    CrossRef Google Scholar

    [104] Chen Z M Z, Wan S M, Zhang J, et al. Human impact overwhelms long-term climatic control on C4 vegetation in the Yellow River Basin after 3 ka BP[J]. Geosystems and Geoenvironment, 2022, 1(2):100021. doi: 10.1016/j.geogeo.2021.100021

    CrossRef Google Scholar

    [105] Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:86-94. doi: 10.1016/j.palaeo.2015.06.004

    CrossRef Google Scholar

    [106] Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.

    Google Scholar

    [107] Li M, Bao F X, Zhang Y, et al. Photochemical aging of soot in the aqueous phase: release of dissolved black carbon and the formation of 1O2[J]. Environmental Science & Technology, 2019, 53(21):12311-12319.

    Google Scholar

    [108] Marques J S J, Dittmar T, Niggemann J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5:11.

    Google Scholar

    [109] Bostick K W, Zimmerman A R, Goranov A I, et al. Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars[J]. Science of the Total Environment, 2020, 724:138198. doi: 10.1016/j.scitotenv.2020.138198

    CrossRef Google Scholar

    [110] Jones M W, De Aragão L E O C, Dittmar T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7):849-874. doi: 10.1029/2018GB006140

    CrossRef Google Scholar

    [111] Masiello C A, Druffel E R M. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4):1185.

    Google Scholar

    [112] Suman D O, Kuhlbusch T A J, Lim B. Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion[M]//Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer, 1997.

    Google Scholar

    [113] Wagner S, Brandes J, Spencer R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1):5064. doi: 10.1038/s41467-019-13111-7

    CrossRef Google Scholar

    [114] Rossel P E, Stubbins A, Rebling T, et al. Thermally altered marine dissolved organic matter in hydrothermal fluids[J]. Organic Geochemistry, 2017, 110:73-86. doi: 10.1016/j.orggeochem.2017.05.003

    CrossRef Google Scholar

    [115] Karthik V, Bhaskar B V, Ramachandran S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. Science of the Total Environment, 2023, 854:158647. doi: 10.1016/j.scitotenv.2022.158647

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1906) PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint