2023 Vol. 43, No. 4
Article Contents

GUO Jingteng, XIONG Zhifang, LI Tiegang. Influencing factors of air-sea CO2 exchange in the Western Tropical Pacific during the late Quaternary[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 48-55. doi: 10.16562/j.cnki.0256-1492.2023071601
Citation: GUO Jingteng, XIONG Zhifang, LI Tiegang. Influencing factors of air-sea CO2 exchange in the Western Tropical Pacific during the late Quaternary[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 48-55. doi: 10.16562/j.cnki.0256-1492.2023071601

Influencing factors of air-sea CO2 exchange in the Western Tropical Pacific during the late Quaternary

More Information
  • Exploring air-sea CO2 exchange helps to analyze the global carbon cycle and global climate change. Due to the direct contact between seawater and atmosphere, characterizing the changes in the carbonate system of surface water is the key to explore the air-sea CO2 exchange. Available studies of the sea surface carbonate system in the Western Tropical Pacific (WTP) was reappraised, the principles, methods, advantages and disadvantages of reconstructing carbonate system parameters with foraminiferal B/Ca and δ11B were summarized. Secondly, the research status of influencing factors of air-sea CO2 exchange in the WTP during the late Quaternary was reviewed from three aspects: El Niño-Southern Oscillation (ENSO), East Asian monsoons, and atmospheric bridge and ocean tunnel. Results show that the ENSO-like processes can affect the air-sea CO2 exchange in the eastern and western parts of the WTP via lateral advection and vertical change, respectively. The East Asian summer monsoon regulates the air-sea CO2 exchange in WTP strongly and effectively, while the East Asian winter monsoon, weakly and insignificantly. During the deglaciation period, the increased ventilation of deep water in the Southern Ocean affects the air-sea CO2 exchange in the WTP through the atmospheric bridge (atmospheric CO2) and ocean tunnel (Antarctic Intermediate Water). In the future, more researches are required into the reliability and coverage of proxy records, and the mechanisms of air-sea CO2 exchange over longer time scales, to understand changes in the global carbon cycle more accurately and clearly.

  • 加载中
  • [1] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000–800, 000 years before present[J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949

    CrossRef Google Scholar

    [2] Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038

    CrossRef Google Scholar

    [3] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957

    CrossRef Google Scholar

    [4] Yu J M, Oppo D W, Jin Z D, et al. Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation[J]. Nature Geoscience, 2022, 15(4): 293-299. doi: 10.1038/s41561-022-00910-9

    CrossRef Google Scholar

    [5] Yamamoto M, Clemens S C, Seki O, et al. Increased interglacial atmospheric CO2 levels followed the mid-Pleistocene Transition[J]. Nature Geoscience, 2022, 15(4): 307-313. doi: 10.1038/s41561-022-00918-1

    CrossRef Google Scholar

    [6] Nehrbass-Ahles C, Shin J, Schmitt J, et al. Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions[J]. Science, 2020, 369(6506): 1000-1005. doi: 10.1126/science.aay8178

    CrossRef Google Scholar

    [7] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [8] Siegenthaler U, Stocker T F, Monnin E, et al. Stable carbon cycle-climate relationship during the late pleistocene[J]. Science, 2005, 310(5752): 1313-1317. doi: 10.1126/science.1120130

    CrossRef Google Scholar

    [9] Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amesterdam: Elsevier, 2001.

    Google Scholar

    [10] Xiong Z F, Li T G, Hönisch B, et al. Monsoon- and ENSO-driven surface-water pCO2 variation in the tropical West Pacific since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2022, 289: 107621. doi: 10.1016/j.quascirev.2022.107621

    CrossRef Google Scholar

    [11] Guillermic M, Misra S, Eagle R, et al. Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients[J]. Biogeosciences, 2020, 17(13): 3487-3510. doi: 10.5194/bg-17-3487-2020

    CrossRef Google Scholar

    [12] Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 305-314. doi: 10.1016/j.jpgl.2005.04.027

    CrossRef Google Scholar

    [13] Yu J M, Elderfield H, Hönisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22(2): PA2202.

    Google Scholar

    [14] Guo J T, Li T G, Xiong Z F, et al. Revisiting the dependence of thermocline-dwelling foraminiferal B/Ca on temperature and[CO32−], and its application in reconstruction of the subsurface carbonate system in the tropical western Pacific since 24 ka[J]. Acta Oceanologica Sinica, 2019, 38(9): 71-86. doi: 10.1007/s13131-019-1476-y

    CrossRef Google Scholar

    [15] Guo J T, Qiu X H, Algeo T J, et al. Precession-driven changes in air-sea CO2 exchange by East Asian summer monsoon in the Western Tropical Pacific since MIS 6[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607: 111267. doi: 10.1016/j.palaeo.2022.111267

    CrossRef Google Scholar

    [16] Yu J, Menviel L, Jin Z D, et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion[J]. Nature Geoscience, 2020, 13(9): 628-633. doi: 10.1038/s41561-020-0610-5

    CrossRef Google Scholar

    [17] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297(5582): 833-836. doi: 10.1126/science.1072815

    CrossRef Google Scholar

    [18] Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599: 117868. doi: 10.1016/j.jpgl.2022.117868

    CrossRef Google Scholar

    [19] Qin B B, Jia Q, Xiong Z F, et al. Sustained deep pacific carbon storage after the mid-pleistocene transition linked to enhanced southern ocean stratification[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097121. doi: 10.1029/2021GL097121

    CrossRef Google Scholar

    [20] Wan S, Jian Z M, Gong X, et al. Deep water [CO32−] and circulation in the south China sea over the last glacial cycle[J]. Quaternary Science Reviews, 2020, 243: 106499. doi: 10.1016/j.quascirev.2020.106499

    CrossRef Google Scholar

    [21] Allen K A, Hönisch B. The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry: a critical evaluation[J]. Earth and Planetary Science Letters, 2012, 345-348: 203-211. doi: 10.1016/j.jpgl.2012.06.012

    CrossRef Google Scholar

    [22] Salmon K H, Anand P, Sexton P F, et al. Calcification and growth processes in planktonic foraminifera complicate the use of B/Ca and U/Ca as carbonate chemistry proxies[J]. Earth and Planetary Science Letters, 2016, 449: 372-381. doi: 10.1016/j.jpgl.2016.05.016

    CrossRef Google Scholar

    [23] Haynes L L, Hönisch B, Dyez K A, et al. Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions[J]. Paleoceanography, 2017, 32(6): 580-599. doi: 10.1002/2016PA003069

    CrossRef Google Scholar

    [24] Dang H W, Wang T T, Qiao P J, et al. The B/Ca and Cd/Ca of a subsurface-dwelling foraminifera Pulleniatina obliquiloculata in the tropical Indo-Pacific Ocean: implications for the subsurface carbonate chemistry estimation[J]. Acta Oceanologica Sinica, 2019, 38(3): 138-150. doi: 10.1007/s13131-019-1406-6

    CrossRef Google Scholar

    [25] Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean[J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6

    CrossRef Google Scholar

    [26] Foster G L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.jpgl.2008.04.015

    CrossRef Google Scholar

    [27] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    CrossRef Google Scholar

    [28] Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations[J]. Science, 2002, 296(5567): 522-525. doi: 10.1126/science.1069401

    CrossRef Google Scholar

    [29] Chen S X, Li T G, Tang Z, et al. Response of the northwestern Pacific upper water δ13C to the last deglacial ventilation of the deep Southern Ocean[J]. Chinese Science Bulletin, 2011, 56(24): 2628-2634. doi: 10.1007/s11434-011-4590-0

    CrossRef Google Scholar

    [30] Douville E, Paterne M, Cabioch G, et al. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals ( Porites)[J]. Biogeosciences, 2010, 7(8): 2445-2459. doi: 10.5194/bg-7-2445-2010

    CrossRef Google Scholar

    [31] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-9): 554-577.

    Google Scholar

    [32] Feely R A, Boutin J, Cosca C E, et al. Seasonal and interannual variability of CO2 in the equatorial Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13-14): 2443-2469. doi: 10.1016/S0967-0645(02)00044-9

    CrossRef Google Scholar

    [33] Yuan X C, Yin K, Cai W J, et al. Influence of seasonal monsoons on net community production and CO2 in subtropical Hong Kong coastal waters[J]. Biogeosciences, 2011, 8(2): 289-300. doi: 10.5194/bg-8-289-2011

    CrossRef Google Scholar

    [34] Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8

    CrossRef Google Scholar

    [35] Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system[J]. Earth and Planetary Science Letters, 2011, 302(3-4): 403-413. doi: 10.1016/j.jpgl.2010.12.034

    CrossRef Google Scholar

    [36] Branson O, Kaczmarek K, Redfern S A T, et al. The coordination and distribution of B in foraminiferal calcite[J]. Earth and Planetary Science Letters, 2015, 416: 67-72. doi: 10.1016/j.jpgl.2015.02.006

    CrossRef Google Scholar

    [37] Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5958): 1394-1397. doi: 10.1126/science.1178296

    CrossRef Google Scholar

    [38] Pelletier G, Lewis E, Wallace D. CO2SYS. XLS: a calculator for the CO2 system in seawater for Microsoft Excel/VBA[Z]. Washington State Department of Ecology/Brookhaven National Laboratory, Olympia, WA/Upton, NY, USA, 2007.

    Google Scholar

    [39] Lueker T J, Dickson A G, Keeling C D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium[J]. Marine Chemistry, 2000, 70(1-3): 105-119. doi: 10.1016/S0304-4203(00)00022-0

    CrossRef Google Scholar

    [40] Mehrbach C, Culberson C H, Hawley J E, et al. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure[J]. Limnology and Oceanography, 1973, 18(6): 897-907. doi: 10.4319/lo.1973.18.6.0897

    CrossRef Google Scholar

    [41] Dickson A G, Goyet C. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2[R]. Oak Ridge: Oak Ridge National Lab. , 1994.

    Google Scholar

    [42] Lee K, Kim T W, Byrne R H, et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1801-1811. doi: 10.1016/j.gca.2009.12.027

    CrossRef Google Scholar

    [43] Babila T L, Rosenthal Y, Conte M H. Evaluation of the biogeochemical controls on B/Ca of Globigerinoides ruber white from the Oceanic Flux Program, Bermuda[J]. Earth and Planetary Science Letters, 2014, 404: 67-76. doi: 10.1016/j.jpgl.2014.05.053

    CrossRef Google Scholar

    [44] Henehan M J, Foster G L, Rae J W B, et al. Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: a case study of Globigerinoides ruber[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(4): 1052-1069. doi: 10.1002/2014GC005514

    CrossRef Google Scholar

    [45] Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(5): 755-766. doi: 10.1016/0198-0149(90)90004-F

    CrossRef Google Scholar

    [46] Klochko K, Kaufman A J, Yao W S, et al. Experimental measurement of boron isotope fractionation in seawater[J]. Earth and Planetary Science Letters, 2006, 248(1-2): 276-285. doi: 10.1016/j.jpgl.2006.05.034

    CrossRef Google Scholar

    [47] Takahashi T, Sutherland S C, Kozyr A. Global ocean surface water partial pressure of CO2 database (LDEO Database Version 2019): measurements performed during 1957-2019 (NCEI Accession 0160492)[Z]. NOAA National Centers for Environmental Information, 2019.

    Google Scholar

    [48] Pelejero C, Calvo E, McCulloch M T, et al. Preindustrial to modern interdecadal variability in coral reef pH[J]. Science, 2005, 309(5744): 2204-2207. doi: 10.1126/science.1113692

    CrossRef Google Scholar

    [49] Inoue H Y, Sugimura Y. Variations and distributions of CO2 in and over the equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event[J]. Tellus B: Chemical and Physical Meteorology, 1992, 44(1): 1-22. doi: 10.3402/tellusb.v44i1.15417

    CrossRef Google Scholar

    [50] Ishii M, Feely R A, Rodgers K B, et al. Air–sea CO2 flux in the Pacific Ocean for the period 1990–2009[J]. Biogeosciences, 2014, 11(3): 709-734. doi: 10.5194/bg-11-709-2014

    CrossRef Google Scholar

    [51] Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004, 18(4): GB4031.

    Google Scholar

    [52] Schlitzer R. Ocean Data View, v.5.5.1-64 bit (Windows)[EB/OL]. 2021.https://odv.awi.de.

    Google Scholar

    [53] Chiodi A M, Harrison D E. Global seasonal precipitation anomalies robustly associated with El Niño and La Niña Events—an OLR perspective[J]. Journal of Climate, 2015, 28(15): 6133-6159. doi: 10.1175/JCLI-D-14-00387.1

    CrossRef Google Scholar

    [54] Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040

    CrossRef Google Scholar

    [55] Tozuka T, Kagimoto T, Masumoto Y, et al. Simulated multiscale variations in the western tropical pacific: the Mindanao dome revisited[J]. Journal of Physical Oceanography, 2002, 32(5): 1338-1359. doi: 10.1175/1520-0485(2002)032<1338:SMVITW>2.0.CO;2

    CrossRef Google Scholar

    [56] Raven J, Caldeira K, Elderfield H, et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide[M]. London, UK: The Royal Society, 2005.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1624) PDF downloads(271) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint