2023 Vol. 43, No. 4
Article Contents

SUN Hanjie, Beaufort Luc, AN Baizheng, LI Tiegang, CHANG Fengming, NAN Qingyun, HUANG Cui. Variations in the length and weight of Noelaerhabdaceae coccolith in the Late Quaternary tropical Western Pacific and their influencing factors[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 38-47. doi: 10.16562/j.cnki.0256-1492.2023071602
Citation: SUN Hanjie, Beaufort Luc, AN Baizheng, LI Tiegang, CHANG Fengming, NAN Qingyun, HUANG Cui. Variations in the length and weight of Noelaerhabdaceae coccolith in the Late Quaternary tropical Western Pacific and their influencing factors[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 38-47. doi: 10.16562/j.cnki.0256-1492.2023071602

Variations in the length and weight of Noelaerhabdaceae coccolith in the Late Quaternary tropical Western Pacific and their influencing factors

  • Sediment samples from core MD06-3050 in the Benham Rise in the Western Philippine Sea at the northern edge of the tropical Western Pacific Warm Pool were selected for Family Noelaerhabdaceae coccolith size analyses. Images were taken and synthesized using bidirectional circular polarization method. The average coccolith length and weight were automatically identified and measured by SYRACO artificial intelligence software. Results show that the average coccolith length and weight show strong similarities in the last 350000 years, with no obvious glacial-interglacial changes. The coccolith calcification index was estimated based on the length and weight of coccolith, and shows the same patterns of the morphological parameters, but presents a more obvious glacial-interglacial pattern. The coccolith calcification index was compared with the ice-core atmospheric pCO2, which shows that the calcification of Noelaerhabdaceae coccoliths was weakened in the glaciation termination period and the early-middle interglacial periods when the atmospheric pCO2 concentration was higher. The 23-ka filtering of the average coccolith length and weight agrees with the summer average solar radiation at 15°N, suggesting the regulation of the Earth's astronomical orbit parameters on the evolution of coccolithophores.

  • 加载中
  • [1] Sabine C L, Feely R A, Gruber N, et al. The Oceanic Sink for Anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371. doi: 10.1126/science.1097403

    CrossRef Google Scholar

    [2] Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes [J]. ICES Journal of Marine Science, 2008, 65(3): 414-432. doi: 10.1093/icesjms/fsn048

    CrossRef Google Scholar

    [3] Rost B, Riebesell U. Coccolithophores and the biological pump: responses to environmental changes[M]//Thierstein H R, Young J R. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer, 2004: 99-125.

    Google Scholar

    [4] Brownlee C, Taylor A. Calcification in coccolithophores: a cellular perspective[M]//Thierstein H R, Young J R. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer, 2004: 31-49.

    Google Scholar

    [5] Milliman J D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7(4): 927-957. doi: 10.1029/93GB02524

    CrossRef Google Scholar

    [6] Beaufort L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite[J]. Micropaleontology, 2005, 51(4): 289-297. doi: 10.2113/gsmicropal.51.4.289

    CrossRef Google Scholar

    [7] Beaufort L, Barbarin N, Gally Y. Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths[J]. Nature Protocols, 2014, 9(3): 633-642. doi: 10.1038/nprot.2014.028

    CrossRef Google Scholar

    [8] Beaufort L, Bolton C T, Sarr A- C, et al. Cyclic evolution of phytoplankton forced by changes in tropical seasonality[J]. Nature, 2022, 601(7891): 79-84. doi: 10.1038/s41586-021-04195-7

    CrossRef Google Scholar

    [9] Sun H J, Li T G, Chang F M, et al. Deep-sea carbonate preservation in the western Philippine Sea over the past 1Ma[J]. Quaternary International, 2017, 459: 101-115. doi: 10.1016/j.quaint.2017.08.041

    CrossRef Google Scholar

    [10] Sun H J, Li T G, Liu C L, et al. Variations in the western Pacific warm pool across the mid-Pleistocene: Evidence from oxygen isotopes and coccoliths in the West Philippine Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 157-171. doi: 10.1016/j.palaeo.2017.07.008

    CrossRef Google Scholar

    [11] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003.

    Google Scholar

    [12] Beaufort L. Adaptation of the random settling method for quantitative studies of calcareous nannofossils[J]. Micropaleontology, 1991, 37(4): 415-418. doi: 10.2307/1485914

    CrossRef Google Scholar

    [13] Beaufort L, Dollfus D. Automatic recognition of coccoliths by dynamical neural networks[J]. Marine Micropaleontology, 2004, 51(1-2): 57-73. doi: 10.1016/j.marmicro.2003.09.003

    CrossRef Google Scholar

    [14] Barbarin N. La Reconnaissance Automatisée des Nannofossiles Calcaires du Cénozoique[D]. Français: Aix-Marseille University, 2014.

    Google Scholar

    [15] Young J R. Neogene[M]//Bown P R. Calcareous Nannofossil Biostratigraphy. London: Micropalaeontological Society Publication Series, 1998.

    Google Scholar

    [16] Jin X B, Ma W T, Liu C L. Origin of the long-term increase in coccolith size and its implication for carbon cycle and climate over the past 2 Myr[J]. Quaternary Science Reviews, 2022, 290: 107642. doi: 10.1016/j.quascirev.2022.107642

    CrossRef Google Scholar

    [17] Su X, Liu C L, Beaufort L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls[J]. Marine Micropaleontology, 2020, 154: 101798. doi: 10.1016/j.marmicro.2019.101798

    CrossRef Google Scholar

    [18] D’Amario B, Ziveri P, Grelaud M, et al. Emiliania huxleyi coccolith calcite mass modulation by morphological changes and ecology in the Mediterranean Sea[J]. PLoS One, 2018, 13(7): e0201161. doi: 10.1371/journal.pone.0201161

    CrossRef Google Scholar

    [19] Young J R, Ziveri P. Calculation of coccolith volume and it use in calibration of carbonate flux estimates[J]. Deep Sea Research II: Tropical Studies in Oceanography, 2000, 47(9-11): 1679-1700.

    Google Scholar

    [20] Monnin E, Indermühle A, Dällenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291(5501): 112-114. doi: 10.1126/science.291.5501.112

    CrossRef Google Scholar

    [21] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859

    CrossRef Google Scholar

    [22] Jia Q, Li T G, Xiong Z F, et al. Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 44-54. doi: 10.1016/j.palaeo.2017.12.039

    CrossRef Google Scholar

    [23] Jaccard S L, Galbraith E D, Sigman D M, et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 156-165. doi: 10.1016/j.jpgl.2008.10.017

    CrossRef Google Scholar

    [24] Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476(7358): 80-83. doi: 10.1038/nature10295

    CrossRef Google Scholar

    [25] Bach L T, Bauke C, Meier K J S, et al. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi[J]. Biogeosciences, 2012, 9(8): 3449-3463. doi: 10.5194/bg-9-3449-2012

    CrossRef Google Scholar

    [26] De Bodt C, Van Oostende N, Harlay J, et al. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size[J]. Biogeosciences, 2010, 7(5): 1401-1412. doi: 10.5194/bg-7-1401-2010

    CrossRef Google Scholar

    [27] Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different day-lengths[J]. Journal of Experimental Marine Biology and Ecology, 2002, 272(1): 55-70. doi: 10.1016/S0022-0981(02)00037-0

    CrossRef Google Scholar

    [28] Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23-24): 3278-3293. doi: 10.1016/j.quascirev.2006.07.018

    CrossRef Google Scholar

    [29] Bollmann J, Baumann K H, Thierstein H R. Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: selective dissolution, evolution, or global environmental change?[J]. Paleoceanography, 1998, 13(5): 517-529. doi: 10.1029/98PA00610

    CrossRef Google Scholar

    [30] Meier K J S, Berger C, Kinkel H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II)[J]. Marine Micropaleontology, 2014, 112: 1-12. doi: 10.1016/j.marmicro.2014.07.001

    CrossRef Google Scholar

    [31] Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J]. Science, 1990, 249(4970): 766-769. doi: 10.1126/science.249.4970.766

    CrossRef Google Scholar

    [32] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278(5342): 1451-1454. doi: 10.1126/science.278.5342.1451

    CrossRef Google Scholar

    [33] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539): 2440-2444. doi: 10.1126/science.293.5539.2440

    CrossRef Google Scholar

    [34] 孙晗杰, 李铁刚, 苏翔, 等. 中更新世以来西菲律宾海上层水体结构演化特征: 来自钙质超微化石 Florisphaera profunda的证据[J]. 第四纪研究, 2011, 31(2): 216-226

    Google Scholar

    SUN Hanjie, LI Tiegang, SU Xiang, et al. Upper water mass structure evolution in the western Philippine Sea since mid-Pleistocene: evidence from the abundance of coccolith species Florisphaera profunda[J]. Quaternary Sciences, 2011, 31(2): 216-226.

    Google Scholar

    [35] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.

    Google Scholar

    [36] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335

    CrossRef Google Scholar

    [37] Cavaleiro C, Voelker A H L, Stoll H, et al. Insolation forcing of coccolithophore productivity in the North Atlantic during the Middle Pleistocene[J]. Quaternary Science Reviews, 2018, 191: 318-336. doi: 10.1016/j.quascirev.2018.05.027

    CrossRef Google Scholar

    [38] Berger A. Milankovitch theory and climate[J]. Reviews of Geophysics, 1988, 26: 624-657. doi: 10.1029/RG026i004p00624

    CrossRef Google Scholar

    [39] Valliina S M, Simó R. Strong relationship between DMS and the solar radiation dose over the global surface ocean[J]. Science, 2007, 315(5811): 506-508.

    Google Scholar

    [40] Nimer N A, Merrett, M J. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon[J]. New Phytologist, 1993, 123(4): 673-677.

    Google Scholar

    [41] Zhang Y. Effects of Temperature, Carbonate Chemistry and Light Intensity on the Coccolithophores Emiliania Huxleyi and Gephyrocapsa Oceanica[D]. University of Kiel, 2014.

    Google Scholar

    [42] Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores-a review[J]. Deep-Sea Research II: Tropical Studies in Oceanography, 2007, 54(5-7): 521–537. doi: 10.1016/j.dsr2.2006.12.004

    CrossRef Google Scholar

    [43] van Bleijswijk J D L, Kempers R S, Veldhuis M J, et al. Cell and growth characteristics of type A and B of Emiliania huxleyi (Prymnesiophyceae) as determined by flow cytometry and chemical analyses[J]. Journal of Phycology, 1994, 30(2): 230–241. doi: 10.1111/j.0022-3646.1994.00230.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1254) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint