2023 Vol. 43, No. 4
Article Contents

LIU Bingjin, HUANG Enqing, TIAN Jun. Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 56-70. doi: 10.16562/j.cnki.0256-1492.2023042001
Citation: LIU Bingjin, HUANG Enqing, TIAN Jun. Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 56-70. doi: 10.16562/j.cnki.0256-1492.2023042001

Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean

More Information
  • Precipitation, evaporation and moisture transport within the oceans are the main components of the global hydrological cycle. However, the evolution of the oceanic hydrological cycle over the Holocene remains a knowledge gap. In this study, through compiling paired planktonic foraminiferal δ18O and Mg/Ca sea surface temperature reconstructions from 98 locations in the tropical ocean, we calculate the fluctuation of sea surface δ18O and residual δ18O for the Holocene period. We notice a striking feature that the residual δ18O records of the tropical western Pacific and eastern Indian Ocean show a different change over the Holocene. The mean residual δ18O of the tropical western Pacific was about 0.2‰ heavier than that of the eastern Indian Ocean during the early-mid Holocene (11.5~6.0 kaBP), but they were almost identical over the late Holocene (2.0~0 kaBP). Combined with the transient climate simulations, we suggest that precession forcing is responsible for this different pattern through modulating a set of climate processes. The lower precession over the early Holocene drove a net atmospheric moisture transport from the western Pacific to the eastern Indian Ocean and lowered precipitation δ18O over the eastern Indian Ocean. Moreover, the strengthened South Asian monsoon delivered large amounts of diluted freshwater into the Bay of Bengal via river systems. All these three mechanisms contribute to a relatively negative excursion of residual δ18O in the eastern Indian Ocean. In contrast, the lower precession resulted in a decrease of net precipitation in the open western Pacific and a loss of freshwater via the atmospheric transport, thus generating heavier residual δ18O values. Through combining seawater δ18O reconstructions from a large spatial extent with the isotope-enabled simulations, this study has provided a reliable picture of the moisture transfer between different ocean basins and unveiled the underlying mechanisms regulated by precession.

  • 加载中
  • [1] Trenberth K E, Fasullo J T, Mackaro J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses [J]. Journal of Climate, 2011, 24(18): 4907-4924. doi: 10.1175/2011JCLI4171.1

    CrossRef Google Scholar

    [2] Gimeno L, Stohl A, Trigo R M, et al. Oceanic and terrestrial sources of continental precipitation [J]. Reviews of Geophysics, 2012, 50(4): RG4003.

    Google Scholar

    [3] Shakun J D, Lea D W, Lisiecki L E, et al. An 800-kyr record of global surface ocean δ18 O and implications for ice volume-temperature coupling [J]. Earth and Planetary Science Letters, 2015, 426: 58-68. doi: 10.1016/j.jpgl.2015.05.042

    CrossRef Google Scholar

    [4] Coplen T B, Herczeg A L, Barnes C. Isotope engineering—using stable isotopes of the water molecule to solve practical problems [J]. Environmental tracers in subsurface hydrology, 2000: 79-110.

    Google Scholar

    [5] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[C]//Proceedings of the Colloques Internationaux du C. N. R. S. 1974.

    Google Scholar

    [6] Zhang P, Xu J, Holbourn A, et al. Obliquity induced latitudinal migration of the Intertropical Convergence Zone during the past~ 410 kyr [J]. Geophysical Research Letters, 2022, 49(21): e2022GL100039.

    Google Scholar

    [7] 黄恩清, 赵蔓, 王跃, 等. 第四纪热带西太平洋表层海水氧同位素的岁差周期[J]. 第四纪研究, 2020, 40(6):1464-1473

    Google Scholar

    HUANG Enqing, ZHAO Man, WANG Yue, et al. Quaternary precession cycles of sea-surface oxygen isotope records from the tropical western Pacific [J]. Quaternary Sciences, 2020, 40(6): 1464-1473.

    Google Scholar

    [8] Zhang P, Xu J, Beil S, et al. Variability in Indonesian throughflow upper hydrology in response to precession‐induced tropical climate processes over the past 120 kyr [J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC017014.

    Google Scholar

    [9] Weldeab S. Bipolar modulation of millennial-scale West African monsoon variability during the last glacial (75, 000–25, 000 years ago) [J]. Quaternary Science Reviews, 2012, 40: 21-29. doi: 10.1016/j.quascirev.2012.02.014

    CrossRef Google Scholar

    [10] Weldeab S, Lea D W, Schneider R R, et al. 155, 000 years of West African monsoon and ocean thermal evolution [J]. Science, 2007, 316(5829): 1303-1307. doi: 10.1126/science.1140461

    CrossRef Google Scholar

    [11] Clemens S C, Holbourn A, Kubota Y, et al. Precession-band variance missing from East Asian monsoon runoff [J]. Nature Communications, 2018, 9(1): 3364. doi: 10.1038/s41467-018-05814-0

    CrossRef Google Scholar

    [12] Huang E Q, Wang P X, Wang Y, et al. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka [J]. Science Advances, 2020, 6(41): eaba4823. doi: 10.1126/sciadv.aba4823

    CrossRef Google Scholar

    [13] Jian Z M, Wang Y, Dang H W, et al. Warm pool ocean heat content regulates ocean–continent moisture transport [J]. Nature, 2022, 612(7938): 92-99. doi: 10.1038/s41586-022-05302-y

    CrossRef Google Scholar

    [14] Cheng H, Li H Y, Sha L J, et al. Milankovitch theory and monsoon [J]. The Innovation, 2022, 3(6): 100338. doi: 10.1016/j.xinn.2022.100338

    CrossRef Google Scholar

    [15] Schmidt G A, LeGrande A N, Hoffmann G. Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model [J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D10): D10103.

    Google Scholar

    [16] 石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟: 历史与展望[J]. 第四纪研究, 2020, 40(1):8-17

    Google Scholar

    SHI Zhengguo, LEI Jing, ZHOU Peng, et al. Numerical simulation researches on orbital-scale Asian climate dynamics: history and perspective [J]. Quaternary Sciences, 2020, 40(1): 8-17.

    Google Scholar

    [17] Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry [J]. Quaternary Science Reviews, 2010, 29(7-8): 989-1004. doi: 10.1016/j.quascirev.2010.01.004

    CrossRef Google Scholar

    [18] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014

    CrossRef Google Scholar

    [19] Tierney J E, Tingley M P. A TEX86 surface sediment database and extended Bayesian calibration [J]. Scientific Data, 2015, 2: 150029. doi: 10.1038/sdata.2015.29

    CrossRef Google Scholar

    [20] Heaton T J, Bard E, Bronk Ramsey C, et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun [J]. Science, 2021, 374(6568): eabd7096. doi: 10.1126/science.abd7096

    CrossRef Google Scholar

    [21] Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.

    Google Scholar

    [22] Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.

    Google Scholar

    [23] Chen M T, Lin X P, Chang Y P, et al. Dynamic millennial‐scale climate changes in the northwestern Pacific over the past 40, 000 years [J]. Geophysical Research Letters, 2010, 37(23): L23603.

    Google Scholar

    [24] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003

    CrossRef Google Scholar

    [25] Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: implications for the East Asian winter monsoon development [J]. Paleoceanography, 2010, 25(2): PA2219.

    Google Scholar

    [26] Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005

    CrossRef Google Scholar

    [27] An Y, Jian Z M. Pulleniatina Minimum Event during the last deglaciation in the southern South China Sea [J]. Chinese Science Bulletin, 2009, 54(23): 4514-4519.

    Google Scholar

    [28] 郝鹏, 李铁刚, 常凤鸣, 等. 末次盛冰期以来南海西南海区对快速气候变化的响应特征[J]. 海洋地质与第四纪地质, 2014, 34(4):83-91

    Google Scholar

    HAO Peng, LI Tiegang, CHANG Fengming, et al. Response of the southwestern South China Sea to the rapid climate changes since the last glacial maximum [J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91.

    Google Scholar

    [29] Huang J, Wan S M, Li A C, et al. Two-phase structure of tropical hydroclimate during Heinrich Stadial 1 and its global implications [J]. Quaternary Science Reviews, 2019, 222: 105900. doi: 10.1016/j.quascirev.2019.105900

    CrossRef Google Scholar

    [30] 葛黄敏, 李前裕, 成鑫荣, 等. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息[J]. 地球科学-中国地质大学学报, 2010, 35(4):515-525 doi: 10.3799/dqkx.2010.067

    CrossRef Google Scholar

    GE Huangmin, LI Qianyu, CHENG Xinrong, et al. Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 515-525. doi: 10.3799/dqkx.2010.067

    CrossRef Google Scholar

    [31] Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009

    CrossRef Google Scholar

    [32] Yang Y P, Xiang R, Zhang L L, et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes? [J]. Geology, 2020, 48(6): 579-583. doi: 10.1130/G47271.1

    CrossRef Google Scholar

    [33] Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific [J]. Geophysical Research Letters, 2003, 30(8): 1428.

    Google Scholar

    [34] Fan W J, Jian Z M, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait [J]. Global and Planetary Change, 2013, 111: 111-117. doi: 10.1016/j.gloplacha.2013.08.017

    CrossRef Google Scholar

    [35] Fan W J, Jian Z M, Chu Z H, et al. Variability of the Indonesian throughflow in the Makassar Strait over the last 30 ka [J]. Scientific Reports, 2018, 8(1): 5678. doi: 10.1038/s41598-018-24055-1

    CrossRef Google Scholar

    [36] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool [J]. Paleoceanography, 2011, 26(1): PA1208.

    Google Scholar

    [37] Jian Z M, Wang Y, Dang H W, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7044-7051. doi: 10.1073/pnas.1915510117

    CrossRef Google Scholar

    [38] Hollstein M, Mohtadi M, Rosenthal Y, et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110, 000 years: forcing mechanisms and implications for the glacial Walker circulation [J]. Quaternary Science Reviews, 2018, 201: 429-445. doi: 10.1016/j.quascirev.2018.10.030

    CrossRef Google Scholar

    [39] Tachikawa K, Timmermann A, Vidal L, et al. CO2 radiative forcing and Intertropical Convergence Zone influences on western Pacific warm pool climate over the past 400 ka [J]. Quaternary Science Reviews, 2014, 86: 24-34. doi: 10.1016/j.quascirev.2013.12.018

    CrossRef Google Scholar

    [40] Hollstein M, Mohtadi M, Kienast M, et al. The impact of astronomical forcing on surface and thermocline variability within the Western Pacific Warm Pool over the past 160 kyr [J]. Paleoceanography and Paleoclimatology, 2020, 35(6): e2019PA003832.

    Google Scholar

    [41] Zhang S, Li T G, Chang F M, et al. Correspondence between the ENSO-like state and glacial-interglacial condition during the past 360 kyr [J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1018-1031. doi: 10.1007/s00343-017-6082-9

    CrossRef Google Scholar

    [42] Zhang S, Yu Z F, Wang Y, et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30, 000 years [J]. Nature Communications, 2022, 13(1): 5457. doi: 10.1038/s41467-022-33206-y

    CrossRef Google Scholar

    [43] Dang H W, Jian Z M, Wang Y, et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene [J]. Science Advances, 2020, 6(42): eabc0402. doi: 10.1126/sciadv.abc0402

    CrossRef Google Scholar

    [44] Dang H W, Wu J W, Xiong Z F, et al. Orbital and sea-level changes regulate the iron-associated sediment supplies from Papua New Guinea to the equatorial Pacific [J]. Quaternary Science Reviews, 2020, 239: 106361. doi: 10.1016/j.quascirev.2020.106361

    CrossRef Google Scholar

    [45] Stott L D. Comment on “Anomalous radiocarbon ages for foraminifera shells” by W. Broecker et al. : a correction to the western tropical Pacific MD9821-81 record [J]. Paleoceanography, 2007, 22(1): PA1211.

    Google Scholar

    [46] Saikku R, Stott L, Thunell R. A bi-polar signal recorded in the western tropical Pacific: northern and Southern Hemisphere climate records from the Pacific warm pool during the last Ice Age [J]. Quaternary Science Reviews, 2009, 28(23-24): 2374-2385. doi: 10.1016/j.quascirev.2009.05.007

    CrossRef Google Scholar

    [47] Dang H W, Jian Z M, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo‐Pacific Warm Pool [J]. Geophysical Research Letters, 2012, 39(1): L01701.

    Google Scholar

    [48] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool [J]. Nature Geoscience, 2010, 3(8): 578-583. doi: 10.1038/ngeo920

    CrossRef Google Scholar

    [49] Hendrizan M, Kuhnt W, Holbourn A. Variability of indonesian throughflow and borneo runoff during the last 14 kyr [J]. Paleoceanography, 2017, 32(10): 1054-1069. doi: 10.1002/2016PA003030

    CrossRef Google Scholar

    [50] Schröder J F, Holbourn A, Kuhnt W, et al. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr [J]. Quaternary Science Reviews, 2016, 154: 143-156. doi: 10.1016/j.quascirev.2016.10.018

    CrossRef Google Scholar

    [51] Schröder J F, Kuhnt W, Holbourn A, et al. Deglacial warming and hydroclimate variability in the central Indonesian Archipelago [J]. Paleoceanography and Paleoclimatology, 2018, 33(9): 974-993. doi: 10.1029/2018PA003323

    CrossRef Google Scholar

    [52] 张鹏, 徐建, 杨策, 等. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):129-137 doi: 10.16562/j.cnki.0256-1492.2017.03.013

    CrossRef Google Scholar

    ZHANG Peng, XU Jian, YANG Ce, et al. Paleoceanographic records of Indonesian throughflow at its exit since the last glacial and their significance [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013

    CrossRef Google Scholar

    [53] Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135, 000 yr [J]. Quaternary Science Reviews, 2006, 25(11-12): 1152-1167. doi: 10.1016/j.quascirev.2005.11.010

    CrossRef Google Scholar

    [54] Pena L D, Cacho I, Ferretti P, et al. El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections [J]. Paleoceanography, 2008, 23(3): PA3101.

    Google Scholar

    [55] Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr [J]. Paleoceanography, 2006, 21(3): PA3008.

    Google Scholar

    [56] Koutavas A, Lynch-Stieglitz J, Marchitto Jr T M, et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376

    CrossRef Google Scholar

    [57] Lo L, Lai Y H, Wei K Y, et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500 years [J]. Journal of Asian Earth Sciences, 2013, 66: 234-239. doi: 10.1016/j.jseaes.2013.01.014

    CrossRef Google Scholar

    [58] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719

    CrossRef Google Scholar

    [59] Oppo D W, Sun Y B. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon [J]. Geology, 2005, 33(10): 785-788. doi: 10.1130/G21867.1

    CrossRef Google Scholar

    [60] Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2019, 171: 178-186. doi: 10.1016/j.jseaes.2018.05.033

    CrossRef Google Scholar

    [61] Cheng Z J, Weng C Y, Steinke S, et al. Anthropogenic modification of vegetated landscapes in southern China from 6, 000 years ago [J]. Nature Geoscience, 2018, 11(12): 939-943. doi: 10.1038/s41561-018-0250-1

    CrossRef Google Scholar

    [62] Huang E Q, Chen Y R, Schefuß E, et al. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene [J]. Earth and Planetary Science Letters, 2018, 494: 1-11. doi: 10.1016/j.jpgl.2018.04.046

    CrossRef Google Scholar

    [63] 范维佳, 陈荣华. 南海北部5万年来的表层海水盐度及东亚季风降水[J]. 第四纪研究, 2011, 31(2):227-235

    Google Scholar

    FAN Weijia, CHEN Ronghua. Sea surface salinity and East Asian monsoon precipitation since the last 50000 years in the northern South China Sea [J]. Quaternary Sciences, 2011, 31(2): 227-235.

    Google Scholar

    [64] 杨文光, 郑洪波, 王可, 等. 南海东北部MD05-2905站36ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10):1012-1018

    Google Scholar

    YANG W G, ZHENG H B, WANG K, et al. Sedimentary characteristic of terrigenous clast of site MD05-2905 in the northeastern part of South China Sea after 36ka and evolution of East Asian monsoon [J]. Advances in Earth Science, 2007, 22(10): 1012-1018.

    Google Scholar

    [65] Nürnberg D, Böschen T, Doering K, et al. Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~ 17 kyr [J]. Paleoceanography, 2015, 30(7): 984-999. doi: 10.1002/2014PA002706

    CrossRef Google Scholar

    [66] Lo L, Chang S P, Wei K Y, et al. Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles [J]. Scientific Reports, 2017, 7(1): 4626. doi: 10.1038/s41598-017-04031-x

    CrossRef Google Scholar

    [67] Mohtadi M, Prange M, Oppo D W, et al. North Atlantic forcing of tropical Indian Ocean climate [J]. Nature, 2014, 509(7498): 76-80. doi: 10.1038/nature13196

    CrossRef Google Scholar

    [68] Mohtadi M, Steinke S, Lückge A, et al. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 89-97. doi: 10.1016/j.jpgl.2010.01.024

    CrossRef Google Scholar

    [69] Setiawan R Y, Mohtadi M, Southon J, et al. The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean [J]. Paleoceanography, 2015, 30(10): 1358-1372. doi: 10.1002/2015PA002802

    CrossRef Google Scholar

    [70] Levi C, Labeyrie L, Bassinot F, et al. Low‐latitude hydrological cycle and rapid climate changes during the last deglaciation [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05N12.

    Google Scholar

    [71] Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans [J]. Earth and Planetary Science Letters, 2014, 387: 240-251. doi: 10.1016/j.jpgl.2013.11.032

    CrossRef Google Scholar

    [72] Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 152-162. doi: 10.1016/j.jpgl.2008.06.029

    CrossRef Google Scholar

    [73] Lückge A, Mohtadi M, Rühlemann C, et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300, 000 years [J]. Paleoceanography, 2009, 24(1): PA1208.

    Google Scholar

    [74] Wang X X, Jian Z M, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300, 000 years [J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035

    CrossRef Google Scholar

    [75] Saraswat R, Lea D W, Nigam R, et al. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections [J]. Earth and Planetary Science Letters, 2013, 375: 166-175. doi: 10.1016/j.jpgl.2013.05.022

    CrossRef Google Scholar

    [76] Saraswat R, Singh D P, Lea D W, et al. Indonesian throughflow controlled the westward extent of the Indo-Pacific Warm Pool during glacial-interglacial intervals [J]. Global and Planetary Change, 2019, 183: 103031. doi: 10.1016/j.gloplacha.2019.103031

    CrossRef Google Scholar

    [77] Govil P, Naidu P D. Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal [J]. Quaternary Science Reviews, 2011, 30(27-28): 3871-3879. doi: 10.1016/j.quascirev.2011.10.004

    CrossRef Google Scholar

    [78] Tierney J E, Pausata F S R, deMenocal P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling [J]. Nature Geoscience, 2016, 9(1): 46-50. doi: 10.1038/ngeo2603

    CrossRef Google Scholar

    [79] Gebregiorgis D, Hathorne E C, Giosan L, et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past~ 1 million years [J]. Nature Communications, 2018, 9(1): 4702. doi: 10.1038/s41467-018-07076-2

    CrossRef Google Scholar

    [80] Banakar V K, Baidya S, Piotrowski A M, et al. Indian summer monsoon forcing on the deglacial polar cold reversals [J]. Journal of Earth System Science, 2017, 126(6): 87. doi: 10.1007/s12040-017-0864-5

    CrossRef Google Scholar

    [81] Gebregiorgis D, Hathorne E C, Sijinkumar A V, et al. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river runoff proxies [J]. Quaternary Science Reviews, 2016, 138: 6-15. doi: 10.1016/j.quascirev.2016.02.012

    CrossRef Google Scholar

    [82] Rippert N, Baumann K H, Pätzold J. Thermocline fluctuations in the western tropical Indian Ocean during the past 35 ka [J]. Journal of Quaternary Science, 2015, 30(3): 201-210. doi: 10.1002/jqs.2767

    CrossRef Google Scholar

    [83] Kuhnert H, Kuhlmann H, Mohtadi M, et al. Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region [J]. Paleoceanography, 2014, 29(5): 423-437. doi: 10.1002/2013PA002555

    CrossRef Google Scholar

    [84] Romahn S, Mackensen A, Groeneveld J, et al. Deglacial intermediate water reorganization: new evidence from the Indian Ocean [J]. Climate of the Past, 2014, 10(1): 293-303. doi: 10.5194/cp-10-293-2014

    CrossRef Google Scholar

    [85] Wang Y V, Leduc G, Regenberg M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation [J]. Paleoceanography, 2013, 28(4): 619-632. doi: 10.1002/palo.20053

    CrossRef Google Scholar

    [86] Govil P, Naidu P D. Evaporation‐precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability [J]. Paleoceanography, 2010, 25(1): PA1210.

    Google Scholar

    [87] Kiefer T, McCave I N, Elderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography [J]. Geophysical Research Letters, 2006, 33(24): L24612. doi: 10.1029/2006GL027097

    CrossRef Google Scholar

    [88] Weldeab S, Lea D W, Oberhänsli H, et al. Links between southwestern tropical Indian Ocean SST and precipitation over southeastern Africa over the last 17 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 200-212. doi: 10.1016/j.palaeo.2014.06.001

    CrossRef Google Scholar

    [89] Clemens S C, Yamamoto M, Thirumalai K, et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions [J]. Science Advances, 2021, 7(23): eabg3848. doi: 10.1126/sciadv.abg3848

    CrossRef Google Scholar

    [90] Pei R J, Kuhnt W, Holbourn A, et al. Evolution of sea surface hydrology along the Western Australian margin over the past 450 kyr [J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2021PA004222.

    Google Scholar

    [91] Yang Y P, Xiang R, Huang Y, et al. Meridional migration of Indian Ocean Monsoon precipitation during the early Holocene: evidence from the Andaman Sea [J]. Quaternary Science Reviews, 2021, 267: 107102. doi: 10.1016/j.quascirev.2021.107102

    CrossRef Google Scholar

    [92] Liu S F, Ye W X, Chen M T, et al. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110112. doi: 10.1016/j.palaeo.2020.110112

    CrossRef Google Scholar

    [93] Nürnberg D, Ziegler M, Karas C, et al. Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr [J]. Earth and Planetary Science Letters, 2008, 272(1-2): 278-289. doi: 10.1016/j.jpgl.2008.04.051

    CrossRef Google Scholar

    [94] Schmidt M W, Lynch‐Stieglitz J. Florida Straits deglacial temperature and salinity change: implications for tropical hydrologic cycle variability during the Younger Dryas [J]. Paleoceanography, 2011, 26(4): PA4205.

    Google Scholar

    [95] Antonarakou A, Kontakiotis G, Mortyn P G, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2015, 170: 69-93. doi: 10.1016/j.gca.2015.08.003

    CrossRef Google Scholar

    [96] Flower B P, Hastings D W, Hill H W, et al. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico [J]. Geology, 2004, 32(7): 597-600. doi: 10.1130/G20604.1

    CrossRef Google Scholar

    [97] Zarriess M, Johnstone H, Prange M, et al. Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials [J]. Geophysical Research Letters, 2011, 38(4): L04706.

    Google Scholar

    [98] Zarriess M, Mackensen A. The tropical rainbelt and productivity changes off northwest Africa: a 31, 000-year high-resolution record [J]. Marine Micropaleontology, 2010, 76(3-4): 76-91. doi: 10.1016/j.marmicro.2010.06.001

    CrossRef Google Scholar

    [99] Weldeab S, Schneider R R, Kölling M, et al. Holocene African droughts relate to eastern equatorial Atlantic cooling [J]. Geology, 2005, 33(12): 981-984. doi: 10.1130/G21874.1

    CrossRef Google Scholar

    [100] Arbuszewski J A, Demenocal P B, Cléroux C, et al. Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum [J]. Nature Geoscience, 2013, 6(11): 959-962. doi: 10.1038/ngeo1961

    CrossRef Google Scholar

    [101] Reißig S, Nürnberg D, Bahr A, et al. Southward displacement of the North Atlantic subtropical gyre circulation system during North Atlantic cold spells [J]. Paleoceanography and Paleoclimatology, 2019, 34(5): 866-885.

    Google Scholar

    [102] Lin H L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: high‐resolution records from the Anoxic Cariaco Basin, Venezuela [J]. Paleoceanography, 1997, 12(3): 415-427. doi: 10.1029/97PA00230

    CrossRef Google Scholar

    [103] Lea D W, Pak D K, Peterson L C, et al. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination [J]. Science, 2003, 301(5638): 1361-1364. doi: 10.1126/science.1088470

    CrossRef Google Scholar

    [104] Weldeab S, Schneider R R, Kölling M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 699-706. doi: 10.1016/j.jpgl.2005.11.012

    CrossRef Google Scholar

    [105] Santos T P, Lessa D O, Venancio I M, et al. Prolonged warming of the Brazil Current precedes deglaciations [J]. Earth and Planetary Science Letters, 2017, 463: 1-12. doi: 10.1016/j.jpgl.2017.01.014

    CrossRef Google Scholar

    [106] Lessa D V O, Venancio I M, dos Santos T P, et al. Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, Southeastern Brazil) [J]. The Holocene, 2016, 26(8): 1175-1187. doi: 10.1177/0959683616638433

    CrossRef Google Scholar

    [107] Hoffmann J, Bahr A, Voigt S, et al. Disentangling abrupt deglacial hydrological changes in northern South America: insolation versus oceanic forcing [J]. Geology, 2014, 42(7): 579-582. doi: 10.1130/G35562.1

    CrossRef Google Scholar

    [108] Schmidt M W, Weinlein W A, Marcantonio F, et al. Solar forcing of Florida Straits surface salinity during the early Holocene [J]. Paleoceanography, 2012, 27(3): PA3204.

    Google Scholar

    [109] Parker A O, Schmidt M W, Jobe Z R, et al. A new perspective on West African hydroclimate during the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 449: 79-88. doi: 10.1016/j.jpgl.2016.05.038

    CrossRef Google Scholar

    [110] Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations [J]. Paleoceanography, 1998, 13(2): 150-160. doi: 10.1029/98PA00070

    CrossRef Google Scholar

    [111] Mulitza S, Boltovskoy D, Donner B, et al. Temperature: δ18O relationships of planktonic foraminifera collected from surface waters [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 202(1-2): 143-152. doi: 10.1016/S0031-0182(03)00633-3

    CrossRef Google Scholar

    [112] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111

    CrossRef Google Scholar

    [113] Schrag D P, Adkins J F, McIntyre K, et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum [J]. Quaternary Science Reviews, 2002, 21(1-3): 331-342. doi: 10.1016/S0277-3791(01)00110-X

    CrossRef Google Scholar

    [114] LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater [J]. Geophysical Research Letters, 2006, 33(12): L12604. doi: 10.1029/2006GL026011

    CrossRef Google Scholar

    [115] Manabe S, Stouffer R J. Two stable equilibria of a coupled ocean-atmosphere model [J]. Journal of Climate, 1988, 1(9): 841-866. doi: 10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2

    CrossRef Google Scholar

    [116] Zaucker F, Broecker W S. The influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin: general circulation model simulations and observations [J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D3): 2765-2773. doi: 10.1029/91JD01699

    CrossRef Google Scholar

    [117] Joussaume S, Sadourny R, Vignal C. Origin of precipitating water in a numerical simulation of the July climate [J]. Ocean-Air Interactions, 1986, 1(1): 43-56.

    Google Scholar

    [118] Schmittner A, Clement A C. Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial‐interglacial cycle [J]. Paleoceanography, 2002, 17(2): 1017.

    Google Scholar

    [119] Broecker W S, Blanton S, Smethie Jr W M, et al. Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean [J]. Global Biogeochemical Cycles, 1991, 5(1): 87-117. doi: 10.1029/90GB02279

    CrossRef Google Scholar

    [120] Carlson A E, LeGrande A N, Oppo D W, et al. Rapid early Holocene deglaciation of the Laurentide ice sheet [J]. Nature Geoscience, 2008, 1(9): 620-624. doi: 10.1038/ngeo285

    CrossRef Google Scholar

    [121] Ullman D J, Carlson A E, Hostetler S W, et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change [J]. Quaternary Science Reviews, 2016, 152: 49-59. doi: 10.1016/j.quascirev.2016.09.014

    CrossRef Google Scholar

    [122] Bentley M J. The Antarctic palaeo record and its role in improving predictions of future Antarctic Ice Sheet change [J]. Journal of Quaternary Science, 2010, 25(1): 5-18. doi: 10.1002/jqs.1287

    CrossRef Google Scholar

    [123] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [124] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015

    CrossRef Google Scholar

    [125] Liu Z Y, Lu Z Y, Wen X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21, 000 years [J]. Nature, 2014, 515(7528): 550-553. doi: 10.1038/nature13963

    CrossRef Google Scholar

    [126] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164

    CrossRef Google Scholar

    [127] Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan-strong response to insolation forcing [J]. Global and Planetary Change, 2018, 166: 107-119. doi: 10.1016/j.gloplacha.2018.04.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(2876) PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint