2023 Vol. 43, No. 5
Article Contents

ZHANG Xia, SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501
Citation: ZHANG Xia, SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501

Low sulfur fugacity mineralization in CLAM hydrothermal field

  • The Okinawa Trough is an important part of Ryukyu subduction system and the sulfide research in this region is important for uncovering the hydrothermal mineralization characteristics in incipient back-arc basin. Many researches have demonstrated that the mineralization characteristics of CLAM hydrothermal system are different from those of others in Okinawa Trough. However, the cause of these differences are still unclear. The mineralogical characteristics and sphalerite in situ trace element contents of CLAM Fe-rich type sulfides are determined systematically. On these basis, we propose the unique mineralogical compositions and geochemical characteristics in CLAM are controlled by sulfur fugacity of hydrothermal fluid. The studied samples are mainly composed of pyrrhotite and low-temperature sphalerite. The occurrence of large amounts of pyrrhotite implies that the hydrothermal fluid possesses low sulfur fugacity. During the mineralization process, both temperature and sulfur fugacity conditions for the mineralization evolved from low to high. The high Fe contents also support the low sulfur fugacity condition during the CLAM sulfide mineralization. The calculation indicates that the sulfur fugacity value of hydrothermal fluid is –15, which is equal to those of other sediment-hosted hydrothermal systems. The decomposition of organism in sediments during hydrothermal circulation is the major cause of low sulfur fugacity in CLAM fluid.

  • 加载中
  • [1] Edmond J M, Measures C, McDuff R E, et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data[J]. Earth and Planetary Science Letters, 1979, 46(1): 1-18. doi: 10.1016/0012-821X(79)90061-X

    CrossRef Google Scholar

    [2] Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington: American Geophysical Union, 2004: 245-267.

    Google Scholar

    [3] de Ronde C E J, Stucker V K. Seafloor hydrothermal venting at volcanic arcs and backarcs[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Elsevier, 2015: 823-849.

    Google Scholar

    [4] Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111-141.

    Google Scholar

    [5] Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224. doi: 10.1146/annurev.earth.24.1.191

    CrossRef Google Scholar

    [6] Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N[J]. Chemical Geology, 2008, 252(3-4): 214-227. doi: 10.1016/j.chemgeo.2008.03.009

    CrossRef Google Scholar

    [7] Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    CrossRef Google Scholar

    [8] Zhang X, Sun Z L, Wu N Y, et al. Mantle plume plays an important role in modern seafloor hydrothermal mineralization system[J]. Geochimica et Cosmochimica Acta, 2023, 352: 211-221. doi: 10.1016/j.gca.2023.05.012

    CrossRef Google Scholar

    [9] Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    CrossRef Google Scholar

    [10] Zhang X, Zhai S K, Sun Z L, et al. Rare earth elements and Sr, S isotope compositions of hydrothermal deposits from the Okinawa Trough: insight into mineralization condition and metal sources[J]. Marine Geology, 2022, 443: 106683. doi: 10.1016/j.margeo.2021.106683

    CrossRef Google Scholar

    [11] Zhang X, Sun Z L, Wu N Y, et al. Polyphase hydrothermal sulfide mineralization in the Minami-Ensei hydrothermal field, middle Okinawa Trough: implications from sulfide mineralogy and in situ geochemical composition of pyrite[J]. Ore Geology Reviews, 2022, 149: 105055. doi: 10.1016/j.oregeorev.2022.105055

    CrossRef Google Scholar

    [12] Wang H, Chu F Y, Li X H, et al. Mineralogy, geochemistry, and Sr-Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough: evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems[J]. Ore Geology Reviews, 2020, 126: 103742. doi: 10.1016/j.oregeorev.2020.103742

    CrossRef Google Scholar

    [13] Wang S J, Sun W D, Huang J, et al. S, Pb, and Fe isotope compositions of sulfides in middle and southern Okinawa Trough: implying the complicated hydrothermal systems in back-arc spreading centers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 195: 104006. doi: 10.1016/j.dsr.2023.104006

    CrossRef Google Scholar

    [14] Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x

    CrossRef Google Scholar

    [15] 胡思谊, 曾志刚, 殷学博, 等. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1): 69-82 doi: 10.16562/j.cnki.0256-1492.2017082301

    CrossRef Google Scholar

    HU Siyi, ZENG Zhigang, YIN Xuebo, et al. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301

    CrossRef Google Scholar

    [16] Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system[J]. Science Bulletin, 2020, 65(11): 958-964. doi: 10.1016/j.scib.2020.03.023

    CrossRef Google Scholar

    [17] Tian F F, Li R, Xie G Z, et al. The formation of supercritical carbon dioxide hydrothermal vents in the Okinawa Trough[J]. Science Bulletin, 2023, 68(2): 154-156. doi: 10.1016/j.scib.2022.12.032

    CrossRef Google Scholar

    [18] Dekov V M, Yasuda K, Kamenov G, et al. Mn-carbonate deposition in a seafloor hydrothermal system (CLAM field, Iheya Ridge, Okinawa Trough): insights from mineralogy, geochemistry and isotope studies[J]. Marine Geology, 2023, 460: 107055. doi: 10.1016/j.margeo.2023.107055

    CrossRef Google Scholar

    [19] Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1

    CrossRef Google Scholar

    [20] Zhang X, Zhai S K, Yu Z H, et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J]. Ore Geology Reviews, 2019, 111: 102944. doi: 10.1016/j.oregeorev.2019.102944

    CrossRef Google Scholar

    [21] Kimura M, Kaneoka I, Kato Y, et al. Report on DELP 1984 cruises in the middle Okinawa Trough: Part V. Topography and geology of the central grabens and their vicinity[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1986, 61(2): 269-310.

    Google Scholar

    [22] Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin[J]. Geochemical Journal, 1991, 25(2): 121-136. doi: 10.2343/geochemj.25.121

    CrossRef Google Scholar

    [23] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    CrossRef Google Scholar

    [24] Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan[J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X

    CrossRef Google Scholar

    [25] Kinoshita M, Yamano M, Post J, et al. Heat flow measurements in the southern and middle Okinawa Trough on R/V sonne in 1988[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1990, 65(3): 571-588.

    Google Scholar

    [26] Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    CrossRef Google Scholar

    [27] Cao H, Sun Z L, Liu C L, et al. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions[J]. China Geology, 2018, 1(2): 225-235. doi: 10.31035/cg2018023

    CrossRef Google Scholar

    [28] Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464

    CrossRef Google Scholar

    [29] Nozaki T, Nagase T, Ushikubo T, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1

    CrossRef Google Scholar

    [30] Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M

    CrossRef Google Scholar

    [31] Nakashima K, Sakai H, Youshida H, et al. Hydrothermal mineralization at the Okinawa Trough[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publication, 1995: 487-508.

    Google Scholar

    [32] Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133

    CrossRef Google Scholar

    [33] Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2

    CrossRef Google Scholar

    [34] Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8): 2210-2225. doi: 10.2113/gsecongeo.88.8.2210

    CrossRef Google Scholar

    [35] Wang Y J, Han X Q, Petersen S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19. doi: 10.1016/j.oregeorev.2016.12.020

    CrossRef Google Scholar

    [36] Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 124-131. doi: 10.1016/j.jmarsys.2016.11.007

    CrossRef Google Scholar

    [37] Gena K, Chiba H, Kase K, et al. The tiger sulfide chimney, yonaguni knoll IV hydrothermal field, southern Okinawa Trough, Japan: the first reported occurrence of Pt-Cu-Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system[J]. Resource Geology, 2013, 63(4): 360-370. doi: 10.1111/rge.12015

    CrossRef Google Scholar

    [38] Zhang X, Sun Z L, Wu N Y. Fe-Pb-Sr isotopic systematics of the hydrothermal chimney from the Minami-Ensei hydrothermal field, middle Okinawa Trough: constraint on hydrothermal mineralization process in incipient back-arc basin[J]. Ore Geology Reviews, 2023, 154: 105332. doi: 10.1016/j.oregeorev.2023.105332

    CrossRef Google Scholar

    [39] Koski R A, Lonsdale P F, Shanks W C, et al. Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California[J]. Journal of Geophysical Research, 1985, 90(B8): 6695-6707. doi: 10.1029/JB090iB08p06695

    CrossRef Google Scholar

    [40] Zierenberg R A, Koski R A, Morton J L, et al. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88(8): 2069-2098. doi: 10.2113/gsecongeo.88.8.2069

    CrossRef Google Scholar

    [41] Hannington M D, Jonasson I R, Herzig P M, et al. Physical and chemical processes of seafloor mineralization at mid-ocean ridges[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 115-157.

    Google Scholar

    [42] Hannington M D, Scott S D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: evidence from sulfide mineralogy and the composition of sphalerite[J]. Economic Geology, 1989, 84(7): 1978-1995. doi: 10.2113/gsecongeo.84.7.1978

    CrossRef Google Scholar

    [43] Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182-2209. doi: 10.2113/gsecongeo.88.8.2182

    CrossRef Google Scholar

    [44] Hirotome U, Hiroshi H, Yuuka M, et al. Ore and gangue minerals of sulfide chimneys from the North Knoll, Iheya ridge, Okinawa trough, Japan[J]. JAMSTEC Deep Sea Research, 2003, 22: 49-62.

    Google Scholar

    [45] Wu N Y, Xu C L, Li A, et al. Oceanic carbon cycle in a symbiotic zone between hydrothermal vents and cold seeps in the Okinawa Trough[J]. Geosystems and Geoenvironment, 2022, 1(3): 100059. doi: 10.1016/j.geogeo.2022.100059

    CrossRef Google Scholar

    [46] Meng X W, Li X H, Chu F Y, et al. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1°-2°S)[J]. Ore Geology Reviews, 2020, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(410) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint